Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Quantum Spin Transport Characteristics in Graphene Field Effect Transistor
Current Issue
Volume 2, 2015
Issue 5 (September)
Pages: 55-64   |   Vol. 2, No. 5, September 2015   |   Follow on         
Paper in PDF Downloads: 51   Since Aug. 28, 2015 Views: 2054   Since Aug. 28, 2015
Authors
[1]
Ahmed S. Abdelrazek, Faculty of Engineering, Kafr-Elsheikh University, Kafr-Elsheikh, Egypt.
[2]
Mohamed M. El-banna, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
[3]
Adel H. Phillips, Faculty of Engineering, Ain-Shams University, Cairo, Egypt.
Abstract
The spin dependent conductance of graphene field effect transistor is investigated in the present paper. Graphene field effect transistor is modeled as: ferromagnetic grapheme / superconducting graphene junction with Schottky barrier of -type at the interface of the junction. The conductance is deduced by using Landuar-Buttiker equation and the corresponding spin dependent Andreev reflection and the normal reflection coefficients are deduced by solving Dirac-Bogoliubov-deGennes equation in one dimension. The spin polarization transport is conducted under the effect of photon of an induced ac-field and magnetic field. Numerical calculations are performed for conductance for both parallel and antiparallel spin alignments and the corresponding spin polarization and giant magnetoresistance are also calculated. In our calculations we consider two different superconducting layers. Results show that the spin-dependent specular Andreev reflection in the present studied junction plays an important role for designing such nanodevice. Also, the Schottky barrier between the ferromagnetic graphene and superconductor graphene regions might be responsible for the conductance dip for both parallel and antiparallel spin alignments. The present paper is very important for spin filter, superconducting qubits needed for quantum information processing at low temperatures and also it might be used as THz oscillator.
Keywords
Spintronics, Ferromagnetic Graphene, Superconducting Graphene, Schottky Barrier, Specular Andreev Reflection, Ac-field, Magnetic Field
Reference
[1]
I. Zutic, J. Fabian and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 ( 2004).
[2]
A. Hirohata and K. Takanashi, Future perspectives for spintronic devices, J. Phys. D: Appl. Phys., 47,193001 (2014).
[3]
H. Dery, P. Dalal, L. Cywinski and L. J. Sham, Spin-based logic in semiconductors for reconfigurable large-scale circuits, Nature , 447,573 (2007).
[4]
H. Dery, W. Hui, B. Ciftcioglu, M. Huang, S. Yang, R. Kawakami, S. Jing, I. Krivorotov, I. Zutic and L. J. Sham, Nanospintronics based on magneto-logic gates, IEEE Trans. Electron Devices,59,259 (2012).
[5]
S. Datta, and B.Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett., 56,665 (1990).
[6]
Atef F. Amin, G. Li, Adel H. Phillips, and Ulrich Kleinekathofer, Coherent control of the spin current through a quantum dot, Europ. Phys. J.B, 68,103 (2009).
[7]
N. Kheirabadi, A. Shafiekhani, and M. Fathipour, Review on graphene spintronics new land for discovery, Superlattices and Microstructures,74,123 (2014).
[8]
G. Hrkac, J. Dean, and D. A. Allwood, Nanowire spintronics for storage class memories and logic, Royal Society of London Philosophical Transactions Series A, 369, 3214 ( 2011).
[9]
P. Chen and G. Zhang, Carbon based spintronics, Science China Physics, Mechanics and Astronomy, 56,207 (2013).
[10]
W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Gated silicene as a tunable source of nearly 100% spin-polarized electrons, Nature Communications, 4,1500 (2013).
[11]
K.S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306,666 ( 2004).
[12]
R.K. Layek and A. K. Nandi, A review on synthesis and properties of polymer functionalized graphene. Polymer, 54,5087 (2013).
[13]
A.K. Geim and K.S. Novoselov, The rise of graphene, Nature Materials, 6,183 (2007).
[14]
E.W. Hill, A. Vijayaragahvan and K. Novoselov, Graphene sensors. IEEE Sensors J.113,161,(2011).
[15]
Y. Si and E.T. Samulski, Synthesis of water soluble graphene, Nano Lett. 8,1679 (2008).
[16]
W. Choi, I. Lahiri ,R. Seelaboyina and Y.S. Kang, Synthesis of graphene and its applications: a review, Critical Rev. Solid State Mater Sci.35,52 (2010).
[17]
V. Singh, D. Joung ,L. Zhai ,S. Das ,S. I. Khondaker and S.Seal, Graphene based materials: past, present and future, Prog. Mater. Sci.56,1178 ( 2011).
[18]
A.H. Castro Neto, F. Guinea, N.M. Peres, K.S. Novoselov and A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81,109 (2009).
[19]
S. Basua and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sensor Actuators B, 1, 173 ( 2012).
[20]
De Arco L Gomez, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson and C. Zhou, Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano,4,2865 ( 2010).
[21]
Y. Zhu, S. Murali ,W. Cai, X. Li ,J.W. Suk ,J.R. Potts and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties and applications, Adv. Mat.22,3906 (2010).
[22]
M.J. Allen ,V.C. Tung , De Arco L. Gomez, Z. Xu ,L. M. Chen, K.S. Nelson ,C. Zhou , R.B. Kaner and Y. Yang, Soft transfer printing of chemically converted graphene, Adv. Mat.21,2098 (2009).
[23]
R.V. Gorbachev, A.S. Mayorov, A. K. Savchenko ,D. W. Horsell and F. Guinea, Conductance of p-n-p graphene structures with air-bridge top gates, Nano Lett. 2008,8 (1995).
[24]
M. Dragoman and D. Dragoman, Graphene-based quantum electronics, Prog. Quantum Electronics, 33,165 (2009).
[25]
M. Pumera, Electrochemistry of graphene: new horizons for sensing and energy storage, Chemical Records, 9,211 (2009).
[26]
S. Casolo ,R. Martinazzo and G. F. J. Tantardini, Band engineering in graphene with superlattices of substitutional defects, Phys. Chem. C, 115,3250 (2011).
[27]
F. Schwierz, Graphene transistors, Nature Nanotech. 5,487 ( 2010).
[28]
D. W. Boukhvalov, M. I. Katsnelson and A. I. Lichtenstein, Hydrogen on graphene: electronicstructure, total energy, structural distortions and magnetism from first-principles calculations, Phys. Rev. B, 77,405 (2008).
[29]
T. Kuilla ,S. Bhadra ,D. Yao ,N. H. Kim ,S. Bose and J. H. Lee, Recent advances in graphene based polymer composites, Prog. Poly. Sci.35, 1350 ( 2010).
[30]
K. S. Novoselov, A. K. Geim,S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London), 438, 197 ( 2005).
[31]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).
[32]
D. H. Hernando, F. Guinea and A. Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps, Phys. Rev. B, 74, 155426 (2006).
[33]
N. Tombros,C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J. vanWees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature, 448, 571 ( 2007).
[34]
N. Tombros, S. Tanabe, A. Veligura, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J. Van Wees, Anisotropic spin relaxation in graphene, Phys. Rev. Lett. 101, 046601 (2008).
[35]
M. I. Katsnelson, K. S. Novoselov and A. K. Geim, Chiral tunneling and the Klein paradox in graphene, Nature Physics, 2, 620 (2006).
[36]
V. V. Cheianov and V. I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n–p junctions in graphene, Phys. Rev. B,74 (R),041403 (2006).
[37]
H. Haugen, D. H. Hernando and A. Brataas, Spin transport in proximity-induced ferromagnetic graphene, Phys. Rev. B, 77, 115406 (2008).
[38]
H.B. Heersche, J.P. Herrero,J. B. Oostinga, L. M. K. Vandersypen and A. F. Morpurgo, Bipolar supercurrent in graphene, Nature (London), 446, 56 (2007).
[39]
X. Du,I. Skachko and E. Y. Andrei, Josephson current and multiple Andreev reflections in graphene SNS junctions, Phys. Rev. B, 77, 184507 ( 2008).
[40]
C.W.J. Beenakker, Specular Andreev reflection in graphene, Phys. Rev. Lett. 97, 067007 (2006).
[41]
C.W.J. Beenakker, Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80, 1337 (2008).
[42]
F. Miao, S. Wijeratne, U. Coskun, Y. Zhang and C.N. Lau, Phase-coherent transport in graphene quantum billiards, Science, 317, 1530 (2007).
[43]
X. Du, I. Skachko and E.Y. Andrei, Josephson current and multiple Andreev reflections in graphene SNS junctions, Phys. Rev. B, 77, 184507 (2008).
[44]
J. Linder, T. Yokoyama, D. Huertas-Hernando and A. Sudbo, Supercurrent switch in graphene  junctions, Phys. Rev. Lett.100, 187004 (2008).
[45]
J. Linder, M. Zareyan and A. Sudbo, Spin-switch effect from crossed Andreev reflection in superconducting graphene spin valves, Phys. Rev. B, 80, 014513 ( 2009).
[46]
Q. Zhang, D. Fu, B. Wang, R. Zhang and D.Y. Xing, Signals for specular Andreev reflection, Phys. Rev. Lett. 101, 047005 (2008).
[47]
A.G. Moghaddam and M. Zareyan, Long-range Josephson coupling through ferromagnetic graphene, Phys. Rev. B, 78, 115413 (2008).
[48]
Y. Asano, T. Yoshida, Y. Tanaka and A.A. Golubov, Electron transport in a ferromagnet superconductor junction on graphene, Phys. Rev. B,78, 014514 ( 2008).
[49]
M. Zareyan, H. Mohammadpour and A.G. Moghaddam, Andreev-Klein reflection in graphene ferromagnet-superconductor junctions, Phys. Rev. B,78, 193406 ( 2008).
[50]
B. Soodchomshom, I-Ming Tang and R. Hoonsawat, Dirac quasiparticle tunneling in a NG/ferromagnetic barrier/SG graphene junction, Physica C, 469, 689 (2009).
[51]
B. Soodchomshom, I-Ming Tang and R. Hoonsawat, Josephson current in a graphene SG/ferromagnetic barrier/SG junction, Physica C,468, 2361( 2008).
[52]
W. A. Zein, N. A. Ibrahim, and A. H. Phillips, Spin polarized transport in an AC-driven quantum curved nanowire, Physics Research International, 5 pages, article ID-505091, 2011.
[53]
M. J. M. de Jang, and C. W. J. Beenakker, Andreev-reflection in ferromagnetic superconductor junctions, Phys. Rev. Lett. 74, 1657 (1995).
[54]
G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B, 25(7), 4515 (1982).
[55]
W. A Zein., A. H Phillips., and O. A Omar, Spin Coherent Transport in Mesoscopic Interference Device, NANO: Brief Reports and Reviews,2, 389 (2007).
[56]
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic transport in two-dimensional graphene, Rev. Mod. Phys. 83, 407 (2011).
[57]
A.H. Aly, J. Hong and A.H. Phillips Study of the Anomaly Phenomena for the Hybrid Superconductor-Semiconductor Junctions, Int. J. Mod. Phys. B, 20, 2305 (2006).
[58]
I. Zutic, J. Fabian and C. Ertelr, Spin polarized transport and spintronic devices, Comprehensive Semicond. Sci.Technol.6,615 (2011).
[59]
G. I.Oya, E. J. Saur, (1979). Preparation of Nb3Ge films by chemical transport reaction and the critical properties, J. Low Temperature Physics, 34, 569 (1979).
[60]
M. D. Asham, W. A. Zein and A. H. Phillips, Photo-induced spin dynamics in nanoelectronics devices, Chin. Phys. Lett. 29 (10), 108502 (2012).
[61]
U. Kaiser, A. Schwarz, and R. Wiesendanger, Magnetic exchange force microscopy with atomic resolution, Nature, 76,446 (2007).
[62]
R. Wiesendanger, Spin mapping at the nanoscale and atomic scale, Rev. Mod. Phys. 81, 1495 (2009).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved