Investigation of the Atomic Properties for Helium-Like
[1]
Entisar Farhan S., Department of Physics, Collage of Science, Kufa University, Najaf, Iraq.
[2]
B. A. Almayahi, School of Physics, Universiti Sains Malaysia, P. Penang, Malaysia; Department of Environment, College of Science, University of Kufa, Najaf, Iraq.
In this paper some atomic properties of He-like ions (Z=14 to 19) in the closed shells are investigated using implement Hartree-Fock wave function. This study started from the standard N-electron Hamiltonian in Hartree atomic units, ћ = ao = m = e =1. The atomic properties such as inter-particle distribution function, one-particle radial distribution function, two-particle radial density function, and all expectation values r< (<rn1 >, <rn12> ,〈V〉,〈T〉,〈E〉) are obtained numerically using programs Math CAD 2013. The non-relativistic Hartree-Fock energies for the ions (Si14+, P15+, Su16+, Cl17+, Ar18+, and K19+) were calculated. It was found that the correlation energies of the respective ions were -187.35802 Hartree, -215.73958 Hartree, -246.114 Hartree, -278.482 Hartree, -312.858 Hartree, and -349.231 Hartree, respectively.
Hartree-Fock Wave Function, Helium, Atomic Properties
[1]
Evgeny Z. et al. Computer physics communications (2010).
[2]
Shiro L. Saito. Atomic data and nuclear data Tables 95 (2009) 836-870.
[3]
C. Froese Fischer. The Hatree-Fock method for atoms, Wiley, New York, 1977.
[4]
Froese, T. Brage, P. Jonsson. Computation Atomic Structure, Institute of physics publishing, Bristol and Philadelphia, 1977.
[5]
M. Ya, Amusia. et al., physics Letters A330 (2004) 10-15.
[6]
A. k. Bhatia, E. Landi. Atomic data and nuclear data tables 97 (2011): 50-108.
[7]
Jiaqi. Chen. Et al. Computer physics communications 179 (2008): 486-491.
[8]
Kenneth Charles Walsh, ph.D. Hartree- fock electronic structure calculations for free atoms and immersed atoms in electron gas (2009).
[9]
E. Buendie .et al., Chemical physics letters 428 (2006) 241-244.
[10]
Per-Olov Lowdin, reviws of modern physics, 34 (1962) 80-87.
[11]
Pierre-Francois Loos, Peter M.W. Gill. Chemical physics letters 500 (2010): 1-8.
[12]
Paola Gori-Giorgi and Andreas Savin., arXiv: cond-at/0611324v [cond-mat-sci] (2006).
[13]
Paola Gori-Giorgi and Andreas Savin, arXiv: cond-at/050307v2 [cond-mat-sci] (2008).
[14]
A. Srsa, F. J. Galez, E. Buendia. Atomic data and nuclear Tables 88 (2004) 163- 202.
[15]
Stefan krebs. Computer physics communications 116 (1999): 137-277.
[16]
Christine Geron, et al. Moleculer Structure 760 (2006): 75-85.
[17]
Ignacia Emn. et al. Atomic data and nuclear data tables 72 (1999): 57-99.
[18]
Russel M. Pitzer. Computer physics communications, 170 (2005) 239-264.
[19]
G. P. Gupta. et al. Atomic data and nuclear data Tables 89 (2005) 1-44.
[20]
T. Koga. et al., J. Molecular Structure 496 (2000) 95-100.
[21]
F. R. Petruzielo, et al. J. arxiv: 1005.3318, v2 [cond mat sci] (2011).
[22]
Hsashi Atsuyama, et al. Computational and applied mathematics 233 (2010): 1584-1589.