Specific Heat and Thermal Expansion of Refractory Nonmetal: CaO
[1]
Vladimir Yu. Bodryakov, Institute of Mathematics, Informatics and Information Technologies, Ural State Pedagogical University, Yekaterinburg, Russia.
In this paper in the development and dissemination ideas of previously published works on a new class of objects (refractory nonmetals), a correlation study of molar specific heat C(T), volumetric coefficient of thermal expansion (T) and molar volume V(T) of solid calcium oxide has been made. As for earlier investigated solids, for CaO clear correlation (C) takes place not only at low temperatures, but also to a much wider temperature range. A significant deviation from the linear low-temperature behavior(C) occurs on reaching heat capacity the classical limit 6R by Dulong and Petit law. Temperature dependence is estimated for calcium oxide of the differential Grüneisen parameter.
Calcium Oxide (CaO), Coefficient of Thermal Expansion, Correlation, Differential Grüneisen Parameter, Heat Capacity, Molar Volume
[1]
O. L. Anderson. Equations of State of Solids for Geophysics and Ceramic Sciences / Oxford Monographs on Geology and Geophysics No. 31. New York – Oxford: Oxford University Press, 1995. – 405 p.
[2]
W. Martienssen and H. Warlimont. Springer Handbook of Condenced Matter and Materials Data. Berlin – Heidelberg – NewYork: Springer, 2005, 1121 p.
[3]
V. Yu. Bodryakov. Correlation of Temperature Dependencies of Thermal Expansion and Heat Capacity of Refractory Metal up to the Melting Point: Molybdenum. High Temperature. 2014; 52 (6): 840–845.
[4]
V. Yu. Bodryakov. On the Correlation between Thermal Expansion Coefficient and Heat Capacity of Argon Cryocrystals. Physics of the Solid State. 2014; 56(11): 2359–2365.
[5]
V. Yu. Bodryakov. Correlation of Coefficient of Thermal Expansion and Heat Capacity of Noble Gas Cryocrystal: Kripton. Technical Physics. 2015; 60 (3):381-384.
[6]
V. Yu. Bodryakov. Correlation between the Thermal Expansion Coefficient and Heat Capacity of Solid Xenon. Inorganic Materials. 2015; 51(2): 172–176.
[7]
V. Yu. Bodryakov. On Correlation between Heat Capacity and Thermal Expansivity of Cubic Pt-Metals (Following to the John Arblaster’s Evaluations). Open Sci. J. Mod. Phys. 2015; 2(1): 10–13.
[8]
V. Yu.Bodryakov and A. A. Bykov. Correlation Characteristics of Thermal Expansion Volume Coefficient and Thermal Capacity in Corundum.Glass and Ceramics. 2015;72 (1-2): 67–70.
[9]
V. Yu. Bodryakov and Yu. N. Babintsev. Correlation Analysis of the Heat Capacity and Thermal Expansionof Solid Mercury. Phys. Solid State. 2015; 57(6): 1264–1269.
[10]
V. Yu. Bodryakov.Correlation of Temperature Dependencies of Thermal Expansion and Heat Capacity of Refractory Metal up to the Melting Point: Tungsten. High Temperature. 2015; 53(5).
[11]
R. A. Robie, B. S. Hemingway, and J. R. Fisher. Thermodynamic properties of minerals and related substances at 298,15 K (25 C) and one atmosphere (1,013 Bars) pressure and at higher temperatures./ Geological survey bulletin. Washington: US Government printing office. 1979. N.1452. 456 p.
[12]
L.V. Gurvich,V. I. Veits, V. A. Medvedev, V. A. Krachkuruzov, V. S. Yungman, V. A. Bergman, V.F. Baibuz, V. S. Iorish, V. N. Yurkov, S. I. Gorbov, I. I. Nazarenko, O. V. Dorofeeva,V. F. Kuratova, E. L. Osina, A. V. Gusarov, V. Ya. Leonidov, I. N. Przheval’skii, A. L. Rogatskii, Yu. M. Efremov, V. G. Ryabova, V. Yu. Zitserman, Yu. G. Hait, E. A. Shenyavskaya, M. E. Efimov, V. A. Kulemza, Yu. S. Khodeev, S. E. Tomberg, V. N. Vdovin, A. Ya. Yakobson, and M. S. Demidova. Termodinamicheskie Svoistva Individual’nykh Veshchestv. Spravochnoe izdanie v 4-kh tomakh (Thermodynamic Properties of Individual Substances: A Reference Book in Four Volumes), Glushko V.P., Ed., vol. III, books 1–2, Moscow: Nauka, 1981.
[13]
V.Ya. Chekhovskoy, Kh. Irgashov, and V. D. Tarasov. Eksperimental’noeIssledovanieEntal’piiiTeploemkostiOksidaKal’tsiadoTemperatury 3100 K (EksperimentalStudy of Enthalpy and Heat Capacity of Calcium Oxide upto the Temperature 3100 K).High Temperature. 1986; 24(3): 614–617.
[14]
Handbook of Physical Quantities, Grigoriev I.S. and Meilikhov E.Z., Eds., Boca Raton, Florida, United States: CRC Press, 1996.
[15]
M.W. Chase. NIST-JANAF Thermochemical Tables. J. Phys. Chem. Ref. Data. 1998; Monograph 9: 1-1951. (URL: http://kinetics.nist.gov/janaf/html/Ca-029.html).
[16]
Lander J. J. Experimental Heat Contents of SrO, BaO, CaO, BaCO3 and SrCO3 at High Temperatures. Dissociation Pressures of BaCO3 and SrCO3. J. Amer. Chem. Soc. 1951; 73(12): 5794–5797.
[17]
K.K. Kelley. Contributions to the Data on Theoretical Metallurgy. XIII. High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds, Washigton: US Government printing office, 1960.
[18]
E. Gmelin. Thermal Properties of Alcaline-Earth-Oxides. I. Specific heat measurements. Z. Naturforsch. 1969; 24a(11): 1794–1800.
[19]
Y.S.Touloukian and C.Y. Ho. Thermophysical properties of matter. The TPRC Data Series. V. 5. Specific Heat – Nonmetallic Solids. NY–Washington: IFI/Plenum, 1970.
[20]
Kh. Irgashov, V. D. Tarasov, and V. Ya. Chekhovskoy. Ental’pia i Teploemkost’ CaO v Intervale Temperatur 1220–2550 K (Enthalpy and heat Capacity of CaO in the temperature range 1220–2550 K. High Temperature. 1984; 22(1): 59–63.
[21]
H. Oda, O. L. Anderson, D. G. Isaak, and I. Suzuki. Measurement of Elastic Properties of Single-Crystal CaO up to 1200 K. Phys. Chem. Minerals. 1992; 19(2): 96-105.
[22]
Landolt-Börnstein - Group III Condensed Matter. Numerical Data and Functional Relationships in Science and Technology. V. 41B. Calcium oxide (CaO) Debye temperature, heat capacity, density, melting and boiling points, hardness. Berlin – Heidelberg: Springer, 1999.
[23]
R. J. Beals and R. L. Cook. Directional Dilatation of Crystal Lattices at Elevated Temperatures. J. Amer. Ceram. Soc. 1957; 40(8): 279–284.
[24]
Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee. Thermphysical Properties of Matter – The TPRC Data Series. V. 13. Thermal expansion – Nonmetallic Solids. NY–Washington: IFI/Plenum, 1977.
[25]
R. Ruppin. Grüneisen Parameters and Thermal Expansion of CaO and SrO. Solid State Comm. 1972; 10(11): 1053–1056.
[26]
S. K.Saxena and G.Shen. Assessed Data on Heat Capacity, Thermal Expansion and Compressibility for Some Oxides and Silicates. J. Geophys. Res. 1992; 97(B13): 19813–19825.
[27]
S. P. Upadhyay and M. Kumar. Thermal Expansion and Compression of Alkaline Earth Oxides and Cesium Halides at High Temperature and High Pressure. Phys. Stat. Sol. (b). 1995; 191(2): 299–305.
[28]
N. A. Dubrovinskaya, L. S. Dubrovinsky, and S. K. Saxena. Systematics of Thermodynamic Data on Solids: Thermochemical and Pressure-Volume-Temperature Properties of Some Minerals. Geochim. Cosmochim. Acta. 1997; 61(19): 4151–4158.
[29]
G. Fiquet, P. Richet, and G. Montagnac. High-Temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel // Phys. Chem. Minerals. 1999; 27(2): 103–111.
[30]
A. S. M. Rao and K. Narender. Studies on Thermophysical Properties of CaO and MgO by γ-Ray Attenuation. J. Thermodyn. 2014; 2014 (ID 123478): 1–8.
[31]
O.J.Whittemore and N.N.Ault. Thermal Expansion of Various Ceramic Materials to 1500 °C. J. Amer. Ceram. Soc. 1956; 39(12): 443–444.
[32]
C.F. Grain and W.J. Campbell Thermal Expansion and Phase Inversion of Six Refractory Oxides / U.S. Bur. Mines Rept. BM-RI-5982, 1962.
[33]
T.Nielsen and M.Leipold. Thermal Expansion in Air of Ceramic Oxides to 2200°C / Jet Propulsion Lab. Rept. JPL-TR-32-297, 1962.
[34]
H.Ohba, K.Hiragushi, and C.Nakashima. High Temperature Properties of Dolomite: I. Study of Dolomite Refractories by High Temperature X-ray Diffraction. Taikabutsu. 1965; 17(94): 364–371.
[35]
D.K.Smith and H. R. Leider Low-Temperature Thermal Expansion of Lithium Hydride, Magnesium Oxide, and Calcium Oxide. J. Appl. Crystallogr. 1968; 1(4): 246–249.
[36]
O.Kamada, T.Takizawa, and T.Sakurai. A High Temperature X-Ray Diffractometer Using a Solar Furnace // Jap. J. Appl. Phys. 1971; 10(4): 485–490.
[37]
A. Vijay. Temperature Dependence of Elastic Constants and Volume Expansion for Cubic and Non-cubic Minerals. Physica B. 2004; 349(1–4): 62–70.