Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
On Correlation Between Heat Capacity and Thermal Expansivity of Cubic Pt-Metals (Following to the John Arblaster’s Evaluations)
Current Issue
Volume 2, 2015
Issue 1 (January)
Pages: 10-13   |   Vol. 2, No. 1, January 2015   |   Follow on         
Paper in PDF Downloads: 60   Since Aug. 28, 2015 Views: 2337   Since Aug. 28, 2015
Authors
[1]
Vladimir Yu. Bodryakov, Institute of Mathematics, Informatics and Information Technologies, Ural State Pedagogical University, Yekaterinburg, Russia.
Abstract
The correlation has been studied between heat capacity C(T) and volume coefficient of thermal expansion (T) for four Pt-metals with FCC structures (Pt, Pd, Rh, Ir) basing on John Arblaster’s detailed evaluations of their thermodynamic properties. It is shown that for all four metals direct close correlation (C) takes place not only at low temperatures, where it’s linear and known as Grüneisen law, but in the whole temperature range up to the melting points. Linear correlation dependences (C) abruptly change its slopes at about point where heat capacities reach classic Dulong-Petit limit of 3R. Comparison of the results for Pt-metals has been done with those for FCC silver taken as appropriate standard solid.
Keywords
Coefficient of Thermal Expansion, Correlation, Heat Capacity, Pt - Metals, Silver
Reference
[1]
V. Yu. Bodryakov. Correlation of Temperature Dependencies of Thermal Expansion and Heat Capacity of Refractory Metal up to the Melting Point: Molybdenum. High Temperature. 2014; 52 (6): 840–845.
[2]
V. Yu. Bodryakov. On the Correlation between Thermal Expansion Coefficient and Heat Capacity of Argon Cryocrystals. Physics of the Solid State. 2014; 56(11): 2359–2365.
[3]
V. Yu. Bodryakov. Correlation of Coefficient of Thermal Expansion and Heat Capacity of Noble Gas Cryocrystal: Krypton. Technical Physics. 2015; 85 (3).
[4]
V. Yu. Bodryakov. Correlation between the Thermal Expansion Coefficient and Heat Capacity of Solid Xenon. Inorganic Materials. 2015; 51 (2): 172-176.
[5]
J. W. Arblaster. The Thermodynamic Properties of Platinum on ITS-90. Platinum Metals Rev. 1994; 38 (3): 119-125.
[6]
J. W. Arblaster. Crystallographic Properties of Platinum. Platinum Metals Rev. 1997; 41 (1): 12-21.
[7]
J. W. Arblaster. Crystallographic Properties of Platinum. New methodology and erratum. Platinum Metals Rev. 2006; 50 (3): 118–119.
[8]
J. W. Arblaster. The Thermodynamic Properties of Palladium on ITS-90. Calphad. 1995; 19 (3): 327–337.
[9]
J. W. Arblaster Crystallographic Properties of Palladium. Assessment of Properties from Absolute Zero to the Melting Point. Platinum Metals Review. 2012; 56 (3): 181–189.
[10]
J. W. Arblaster. The Thermodynamic Properties of Rhodium on ITS-90. Calphad. 1995; 19 (3): 357–364.
[11]
J. W. Arblaster. Crystallographic Properties of Rhodium. Platinum Metals Rev. 1997; 41 (4): 184–189.
[12]
J.W. Arblaster. The Thermodynamic Properties of Iridium on ITS-90 // Calphad. 1995; 19 (3): 365–372.
[13]
J. W. Arblaster. Crystallographic Properties of Iridium // Platinum Metals Rev. 2010; 54 (2): 93–102.
[14]
G. T. Furukawa, M. L. Reilly and J. S. Gallagher. Critical Analysis of Heat-Capacity Data and Evaluation of Thermodynamic Properties of Ruthenium, Rhodium, Palladium, Iridium and Platinum from 0 to 300 K. A Survey of the Literature Data on Osmium. J. Phys. Chem. Ref. Data. 1974; 3 (1): 163–209.
[15]
Y. S. Touloukian and E. H. Buico. Specific Heat: Metallic Elements and Alloys. Thermophysical Properties of Matter, vol. 4. New York: IFI/Plenum Press, 1970.
[16]
L. A. Novitskii and I. G. Kozhevnikov. Teplofizicheskie svoistva materialov pri nizkikh temperaturakh (Thermophysical Properties of Materials at Low Temperatures), Moscow: Mashinostroenie, 1975.
[17]
R. A. Robie, B. S. Hemingway and J. R. Fisher. Thermodynamic Properties of Minerals and Related Substances at 298,15 K (25 °C) and One Atmosphere (1,013 Bars) Pressure and at Higher Temperatures / Geological survey bulletin N 1452. Washington: US Government printing office, 1979.
[18]
M. E. Drits, P. B. Budberg, G. S. Burkhanov, A. M. Drits and V. M. Panovko. Svoistva Elementov (Properties of Elements: A Reference Book), Drits M.E., Ed., Moscow: Metallurgiya, 1985.
[19]
Zinoviev V.E. Teplofizicheskie Svoistva Metallov pri Vysokih Temperaturah (Thermophysical Properties of Metals at High Temperatures: A Reference Book), Moscow: Metallurgiya. 1989.
[20]
Handbook of Physical Quantities, I. S. Grigoriev and E. Z. Meilikhov, Eds., Boca Raton, Florida, United States: CRC Press, 1996.
[21]
D. R. Smith and F. R. Fickett. Low-Temperature Properties of Silver. J. Res. Natl. Inst. Stand. Technol. 1995; 100 (2): 119–171.
[22]
A. T. Dinsdale. SGTE Data for Pure Elements. Teddington, Middlesex, UK: National Physical Laboratory, NPL Materials Centre, Division of Industry and Innovation, 2007.
[23]
X. B. Li, Y. Q. Xie, Y. Z. Nie, and H. J. Peng. Low Temperature Thermodynamic Study of the Stable and Metastable Phases of Silver // Acta Metall. Sin. (Engl. Lett.). 2007; 20 (5): 355–362.
[24]
Kaye&Laby. Tables of physical and chemical constants (National Physical Laboratory) // URL: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_6.html
[25]
P. D. Pathak and N. G. Vasavada. Thermal Expansion and the Law of Corresponding States. J. Phys. C: Solid State Phys. 1970; 3 (2): L44–L48.
[26]
M. E. Straumanis and C. L. Woodward. Lattice Parameters and Thermal Expansion Coefficients of Al, Ag and Mo at Low Temperatures. Comparison with Dilatometric Data. Acta Crystallographica. Sect. A. 1971; 27 (6): 549–551.
[27]
G. K. White and J. G. Collins. Thermal Expansion of Copper, Silver, and Gold at Low Temperatures. J. Low Temp. Phys. 1972; 7 (1-2): 43–75.
[28]
K. O. McLean, C. A. Swenson and C. R. Case. Thermal Expansion of Copper, Silver, and Gold below 30 K. J. Low Temp. Phys. 1972; 7 (1-2): 77–98.
[29]
S. I. Novikova. Teplovoe Rasshirenie Tverdykh Tel. (Thermal Expansion of Solids: A Reference Book), Moscow: Nauka, 1974.
[30]
Y. S. Touloukian, R. K. Kirby, R. E. Taylor and P. D. Desai. Thermophysical Properties of Matter, Plenum Publishing Co., New York, vol. 12, 1975.
[31]
In-Kook Suh, T. Ohta, Y. Waseda. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction // J. Mater. Sci. 1988; 23 (2): 757–760.
[32]
A. R. Drews. Calibration of a High Temperature X-ray Diffraction Stage by Differential Thermal Expansion // Advances in X-ray Analysis. 2001; 44 (1): 44–49.
[33]
Kaye&Laby. Tables of physical and chemical constants (National Physical Laboratory) // URL: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved