Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Fresnel Light-Drag Formula, Einstein’s Dual Theories of Time Dilation and the Amended Lorentz Transformation
Current Issue
Volume 2, 2015
Issue 1 (January)
Pages: 1-9   |   Vol. 2, No. 1, January 2015   |   Follow on         
Paper in PDF Downloads: 63   Since Aug. 28, 2015 Views: 2395   Since Aug. 28, 2015
Authors
[1]
Robert J. Buenker, Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaussstr. 20, Wuppertal, Germany.
Abstract
The history of Fresnel’s light-drag formula is reviewed and its impact on relativity theory is assessed. Fizeau’s experimental results reported in 1851 not only demonstrated that light drag is a real effect, they also provided the first concrete indication that the speed of light in free space is independent of the state of motion of the source. This ultimately became one of the main justifications for Einstein’s second postulate of relativity and his ether-free description of light propagation. However, it is a little known fact that Einstein’s original work on relativity presented two distinct theories of time dilation. One is based on the Lorentz transformation (LT) and claims that a moving clock always runs slower than the observer’s stationary clock (symmetric theory). The other version assumes instead that accelerated clocks always run slower than their identical counterparts which remain at rest in the original position (asymmetric theory). It is pointed out that there have been numerous confirmations of the asymmetric theory, such as by using the transverse Doppler effect or comparing elapsed times on atomic clocks in various states of motion. The LT is only valid for uniformly translating systems and is therefore contradicted by these results because of its prediction of exclusively symmetric outcomes. It is shown that a different Lorentz-type transformation, referred to as the ALT or GPS-LT, exists which is compatible with asymmetric time dilation, and therefore with all known experiments. A degree of freedom in the definition of the general Lorentz transformation allows this goal to be readily achieved, while still satisfying Einstein’s light-speed postulate and the relativity principle (RP).
Keywords
Fresnel Light-Drag Formula, Postulates of Special Relativity, Degree of Freedom in the Lorentz Transformation, Relativistic Velocity Transformation (RVT), Alternative Lorentz Transformation (ALT), Global Positioning System-Lorentz Transformation (GPS-LT), Amended Relativity Principle (ARP)
Reference
[1]
A. Einstein, Ann. Physik 322 (10), 891 (1905).
[2]
M. von Laue, Ann. Physik 23, 989 (1907).
[3]
A. Pais, ‘Subtle is the Lord…’ The Science and Life of Albert Einstein (Oxford University Press, Oxford, 1982), p. 144.
[4]
Lord Rayleigh, The Theory of Sound. 2nd Ed. (Macmillan, London, 1894-6; Dover Publications, New York, 1945).
[5]
L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960), P. 1.
[6]
R. J. Buenker, Khim. Fyz. 22 (10), 124 (2003).
[7]
A. A. Michelson, Rep. Brit. Assoc. Montreal, 1884, p. 56.
[8]
P. Zeeman, Proc. Kon. Acad. Van Weten 17, 445 (1914).
[9]
P. Zeeman, Proc. Kon. Acad. Van Weten 18, 398 (1915).
[10]
R. T. Weidner and R. L. Sells, Elementary Modern Physics (Allyn and Bacon, Boston, 1962), p. 348.
[11]
A. A. Michelson and E. W. Morley, Am. J. Sci. 34, 333 (1887).
[12]
R. Wang, Y. Zheng, A. Yao and D. Langley, Phys. Lett. A 312, 7 (2003).
[13]
R. Wang, Y. Zheng and A. Yao, Phys. Rev. Lett. 93, 143901 (2004).
[14]
R. Wang, Galilean Electrodynamics 16, 23 (2005).
[15]
G. Sagnac, C. R. Acad. Sci. Paris 157, 708 (1913).
[16]
T. E. Phipps, Jr., Old Physics for New (Apeiron, Montreal, 2006), p. 42.
[17]
A. Pais, ‘Subtle is the Lord…’ The Science and Life of Albert Einstein (Oxford University Press, Oxford, 1982), p. 120.
[18]
W. Voigt, Goett. Nachr., 1887, p. 41.
[19]
J. Larmor, Aether and Matter (Cambridge University Press, Cambridge, 1900).
[20]
A. Pais, ‘Subtle is the Lord…’ The Science and Life of Albert Einstein (Oxford University Press, Oxford, 1982), p. 126.
[21]
H. A. Lorentz, Versl. K. Ak. Amsterdam 10, 793 (1902); Collected Papers, Vol. 5, p. 139.
[22]
C. W. Kilmister, Special Theory of Relativity (Pergamon Press, Oxford, 1970), pp. 34-39.
[23]
C. M. Will, Phys. Rev. D 45, 403 (1992).
[24]
M. von Laue, Relativitätstheorie, Vol. 1, 7th Ed. (Vieweg, Braunschweig, 1955), p. 36.
[25]
R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 102.
[26]
R. J. Buenker, Apeiron 19, 218 (2012).
[27]
W. H. E. Ives and G. R. Stilwell, J. Opt. Soc. Am. 28, 215 (1938).
[28]
H. J. Hay, J. P. Schiffer, T. E. Cranshaw and P. A. Egelstaff, Phys. Rev. Letters 4, 165 (1960).
[29]
A. Einstein, Jahrb. Rad.Elektr. 4, 411(1907).
[30]
W. Kündig, Phys. Rev. 129, 2371 (1963).
[31]
D. C. Champenay, G. R. Isaak,and A. M. Khan, Nature 198, 1186, 1963.
[32]
W. Sherwin, Phys. Rev. 120, 17 (1960).
[33]
J. C. Hafele and R. E. Keating, Science 177, 166 (1972).
[34]
J. C. Hafele and R. E. Keating, Science 177, 168 (1972).
[35]
R. J. Buenker, Apeiron 15, 254 (2008).
[36]
R. J. Buenker, Apeiron 16, 96 (2009).
[37]
D. H. Perkins, Introduction to High Energy Physics (Addison-Wesley, London, 1972), p. 192.
[38]
W. Rindler, Essential Relativity (Springer Verlag, New York, 1977), p. 44.
[39]
R. J. Buenker, Relativity Contradictions Unveiled: Kinematics, Gravity and Light Refraction (Apeiron, Montreal, 2014), p. 201.
[40]
R. D. Sard, Relativistic Mechanics (W. A. Benjamin, New York, 1970), p. 95.
[41]
http://en.wikipedia.org/wiki/Length_contraction
[42]
L. de Broglie, Compt. Ren. 177, 507 (1923).
[43]
R. J. Buenker, Apeiron 15, 382 (2008).
[44]
B. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Vintage Books, 2000.
[45]
C. M. Will, Was Einstein Right?, Basic Books Inc., U.S, 1993, p. 272.
[46]
R. J. Buenker, Apeiron 19, 84 (2012).
[47]
R. J. Buenker, Relativity Contradictions Unveiled: Kinematics, Gravity and Light Refraction (Apeiron, Montreal, 2014), p. 96
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved