Photo-Induced Thermo-Spin In Ferromagnetic Graphene Field Effect Transistor
Thermospin effects in ferromagnetic graphene mesoscopic device are investigated. The thermo-spin characteristics such as spin Seebeck coefficient, the thermal conductance, and spin figure of merit are expressed in terms of the tunneling probability of Dirac fermions for both parallel and antiparallel spin alignments of electrons. This tunneling probability and the corresponding electrical conductance are derived by solving Dirac equation for both spin alignments. Numerical calculations are performed and the obtained results show that the values of Seebeck coefficient, thermal conductance, and figure of merit are different for spin up and spin down. Their values are increased as the frequency of the induced ac-field increases, that is, the thermospin transport through such device is enhanced by the photon energy. The present research is very important in the field of spin caloritronics on the nanoscale systems.
Ferromagnetic Graphene, Spin Caloritronics, Thermospin Seebeck Coefficient, Thermal Conductance, Figure of Merit and Ac-Field
[1]
I. Zutic , J. Fabian , S. Das Sarma, “Spintronics: Fundamentals and applications”, Rev. Mod. Phys, vol.76, 323,2004.
[2]
C. Chappert , A. Fert and F. N.Van Dau, “ The emergence of spin electronics in data storage”, Nature Mater, vol.6(11)pp. 813 – 823, 2007.
[3]
W. A. Zein, A. H. Phillips and O. A. Omar “Spin-coherent transport in mesoscopic interference device”, Nano, vol. 2 no.6, 389,2007.
[4]
A. F. Amin, G. Q. Li , A. H. Phillips and U. Kleinekathöfer, “Coherent control of the spin current through a quantum dot”, Europ. Phys. J. B, vol. 68, no.1, pp. 103 – 109,2009.
[5]
W. A. Zein , N. A. Ibrahim and A. H. Phillips, “ Spin Polarized Transport in an AC-Driven Quantum Curved Nanowire”, Physics Research International ,2011(Article ID 505091) 5 pages DOI: 10,1155/2011/505091
[6]
A. F. Amin,A. S. Atalla and A. H. Phillips, “Quantum spin transport in superconducting and ferromagnetic hybrid system”, Armenian J. Phys., vol. 4, no.2,pp. 134-145,2011.
[7]
M. D. Asham, W. A. Zein and A. H. Phillips, “Photo-Induced Spin Dynamics in Nanoelectronic Devices”, Chin. Phys. Lett. , vol.29, no.10, 108502, 2012.
[8]
G. E. Bauer,A. H. MacDonald and S. Maekawa, “Spin Caloritronics” ,Sol. Stat. Commun., vol.150(11-12), pp. 459–460,2010.
[9]
G. E. Bauer , E. Saitoh and B. J. van Wees, “Spin caloritronics”, Nat. Mater.,vol. 11, no.5, pp. 391-399,2012.
[10]
L. Gravier , S. Serrano-Guisan , F. Reuse and J. P. Ansermet, “Thermodynamic description of heat and spin transport in magnetic nanostructures”, Phys. Rev. B, vol. 73, no.2, 024419 , 2006.
[11]
K. Uchida ,S. Takahashi,K. Harii,J. Ieda , W. Koshibae ,K. Ando ,S. Maekawa and E. Saitoh,” Observation of the spin Seebeck effect”, Nature, vol. , no.7214, pp. 778-781,2008.
[12]
A. Slachter,F. L. Bakker,J. P. Adam and B. J. van Wees, “Thermally driven spin injection from a ferromagnet into a non-magnetic metal”, Nature Phys.,vol. 6, no.11,pp. 879–882,2010.
[13]
K. Uchida ,J. Xiao , H. Adachi ,J. Ohe ,S. Takahashi, J. Ieda ,T. Ota , Y. Kajiwara ,H. Umezawa, H. Kawai ,G. E. Bauer, S. Maekawa and E. Saitoh, “Spin Seebeck insulator”, Nature Mater. ,vol., no.11,pp. 894–897,2010.
[14]
C. M. Jaworski ,J. Yang ,D.D. Awschalom ,J. P. Heremans andR. C. Myers “Observation of the spin-dependent Seebeck effect in a ferromagnetic semiconductor”, Nature Mater., vol.9, no.11,pp. 898-903,2010.
[15]
D. K. C. MacDonald , “Thermoelectricity: An Introduction to the Principles” (Dover Books on Physics) (Dover Publications) ,2006
[16]
A. H. Castro Neto ,F. Guinea,N. M. R. Peres,K. S. Novoselov and A. K.Geim, “The electronic properties of graphene”, Rev. Mod. Phys.,vol. 81,no.1,pp. 109–162,2009.
[17]
Z. Chen ,Y. M. Lin, M. J. Rooks and P. Avouris, “Graphene nano-ribbon electronics”, Physica E, vol.40, no.2,pp. 228–232,2007.
[18]
K. I. Bolotin ,K. J. Sikes,J. Hone,H. L. Stormer and P. Kim, “Temperature-Dependent Transport in Suspended Graphene”, Phys. Rev. Lett.,vol. 101, no.9 096802, 2008.
[19]
X. Du ,I. Skachko, A. Barker and E. Y. Andrei, “Approaching ballistic transport in suspended graphene”, Nature Nanotech. ,vol. 3, no.8 pp.491 – 495,2008.
[20]
G. Liang, N. Neophytou, D. Nikonov and M. Lundstrom , “Performance projections for ballistic graphene nanoribbons field effect transistors”, IEEE Trans. on Electron Devices, vol. 54,no.4, 677,2007.
[21]
A. Naeemi and J. D. Meindl “Conductance modeling for graphene nanoribbon (GNR) interconnects” IEEE Electron Device Lett. , vol.28, no.5, 428, 2007.
[22]
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman and B. J.Van Wees, “Electronic spin transport and spin precession in single graphene layers at room temperature”, Nature (London), vol.448, 571, 2007.
[23]
M. D. Asham ,W. A. Zein and A. H. Phillips, “Quantum pumping driven by an ac-field in graphene field effect transistor”, J. American Science, vol. 8,no.7,pp. 374-381, 2012.
[24]
Y. M. Zuev , W. Chang and P. Kim, “Thermoelectric and magnetothermoelectric transport measurements of graphene”, Phys. Rev. Lett. , vol.102, 096807, 2009.
[25]
P. Wei ,W. Bao ,Y. Pu ,C. N. Lau and J. Shi, “Anomalous thermoelectric transport of Dirac particles in graphene”, Phys. Rev. Lett. , vol.102, 166808, 2009.
[26]
J. G. Checkelsky andN. P. Ong, “Thermopower and Nernst effect in graphene in a magnetic field”, Phys. Rev. B , vol.80, 081413(R),2009.
[27]
E. H. Hwang,E. Rossi and S. Das Sarma, “Theory of thermopower in two-dimensional graphene”, Phys. Rev. B, vol. 80, 235415, 2009.
[28]
T. Lofwander and M. Fogelstrom, “Impurity scattering and Mott’s formula in graphene”, Phys. Rev. B, vol.76, 193401, 2007.
[29]
B. Dora and P. Thalmeier, “Magnetotransport and thermoelectricity in Landau-quantized disordered graphene”, Phys. Rev. B, vol. 76, 035402, 2007.
[30]
X. Z. Yan, Y. Romiah and C. S. Ting, “Thermoelectric power of Dirac fermions in graphene”, Phys. Rev. B, vol. 80, 165423, 2009.
[31]
L. Zhu, R. Ma, L. Sheng, M. Liu and D. N. Sheng, “Universal thermoelectric effect of Dirac fermions in graphene”, Phys. Rev. Lett. , vol.104, 076804, 2010.
[32]
H. Haugen, D. Huertas-Hernando and A. Brataas, “Spin transport in proximity induced ferromagnetic graphene” ,Phys. Rev. B, vol. 77, 115406, 2008.
[33]
K. Nomura and A. H. McDonald, “Quantum transport of massless Dirac fermions”, Phys. Rev. Lett., vol. 98, 076602, 2007.
[34]
A. N. Mina and A. H. Phillips, “Photon-assisted resonant chiral tunneling through a bilayer graphene barrier”, Progress in Physics, vol.1, 112, 2011.
[35]
G. Platero and R. Aguado, “Photon-assisted transport in semiconductor nanostructures”, Phys. Rep. ,vol.395, 1, 2004.
[36]
Y. Yan , Q-F Liang , H. Zhao and C-Q Wu, “Thermoelectric properties of hexagonal graphene quantum dots” , Phys. Lett. A , vol.376, 1154, 2012.
[37]
T. Yokoyama, “Controllable spin transport in ferromagnetic graphene junction” Phys. Rev. , vol.77, 073413, 2008.
[38]
W. Han ,K. Pi ,K. M. McCreary ,Y. Li ,J. J. I. Wang ,A. G. Swartz and R. K. Kawakami, “Tunneling spin injection into single layer graphene”, Phys. Rev. Lett., vol.105, 167202,2010.
[39]
F. M. Mojarabian and G. Rashedi, “Effects in graphene based ferromagnetic/ normal/ferromagnetic junctions”, Physica E, vol. 44, 647, 2011.
[40]
S. Das Sarma , S. Adam , E. H. Hwang and E. Rossi, “Electronic transport in two dimensional graphene”, Rev. Mod. Phys., vol.83, 407, 2011.
[41]
B. Scharf , A. Matos-Abiague , I. Zutic and J. Fabian, “Theory of thermal spin-charge coupling in electronic systems”, Phys. Rev. B , vol.85, 085208,2012.
[42]
M. Hatami , G. E. W. Bauer , Q. Zhang and P. J. Kelly, “Thermal spin transfer torque in magnetoelectronic devices”, Phys. Rev. Lett. , vol.99, 066603, 2007.
[43]
H. Yu , S. Granville ,D. P. Yu and J. P. Ansermet, “Evidence for thermal spin-transfer torque”, Phys. Rev. Lett. , vol.104, 146601, 2010.
[44]
T. T. Heikkila, M. Hatami and G.E.W. Bauer, “Spin heat accumulation and its relaxation in spin valves”, Phys. Rev. B, vol. 81, 100408, 2010.
[45]
F. L. Bakker, J. Flipse and B. J.Van Wees, “Nanoscale temperature detection using the Seebeck effect”, J. Appl. Phys. ,vol.111, 084306, 2012.