Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Hormones and Related Molecules Play Primary Roles in the Development of Multicellular Organisms
Current Issue
Volume 6, 2019
Issue 1 (March)
Pages: 11-18   |   Vol. 6, No. 1, March 2019   |   Follow on         
Paper in PDF Downloads: 16   Since Mar. 20, 2019 Views: 907   Since Mar. 20, 2019
Authors
[1]
Thi Mong Diep Nguyen, Faculty of Biology-Agricultural Engineering, Quy Nhon University, Quy Nhon City, Viet Nam.
[2]
Hoa Tran Nhu Buu, Department of Advanced Orthopedic Surgery, Quy Hoa National Leprosy Dermatology Hospital, Quy Nhon City, Viet Nam.
Abstract
The complex communication between cells is a vital process to every multicellular life form. It is for instance mandatory for growth and differentiation of cells in all tissues and organs. Hormones, growth factors or morphogens play their part in it as intercellular mediators and have a primary role in development and reproduction. Sexual reproduction and the mechanisms that make it possible are as necessary in the evolution of species than the prevalence of the best genes, since the prerequisites for an effective brewing of genes is a successful mating. For this matter, it is known that it is the hypothalamo-pituitary-gonadal axis that is in charge of this complex system of reproduction. It regulates precisely the many hormones and receptors involved since the slightest malfunction is fraught with consequence.
Keywords
Sexual Behavior, Hormones, Reproduction, HPG, GnRH, Gonadotropins
Reference
[1]
Darwin, C. On the Origin of Species by Means of Natural Selection, 1st edition; 1859 (London: John Murray).
[2]
Blacher, P.; Huggins, T. J.; Bourke, A. F. G. Evolution of ageing, costs of reproduction and the fecundity-longevity trade-off in eusocial insects. Proc Biol Sci 2017, 284, doi: 10.1098/rspb.2017.0380.
[3]
Brooks, R. C.; Garratt, M. G. Life history evolution, reproduction, and the origins of sex-dependent aging and longevity. Ann N Y Acad Sci 2017, 1389, 92-107, doi: 10.1111/nyas.13302.
[4]
Crouch, D. J. M. Statistical aspects of evolution under natural selection, with implications for the advantage of sexual reproduction. J Theor Biol 2017, 431, 79-86, doi: 10.1016/j.jtbi.2017.07.021.
[5]
Kolodny, O.; Stern, C. Evolution of risk preference is determined by reproduction dynamics, life history, and population size. Sci Rep 2017, 7, 9364, doi: 10.1038/s41598-017-06574-5.
[6]
Olejarz, J.; Veller, C.; Nowak, M. A. The evolution of queen control over worker reproduction in the social Hymenoptera. Ecol Evol 2017, 7, 8427-8441, doi: 10.1002/ece3.3324.
[7]
Kraus, C.; Schiffer, P. H.; Kagoshima, H.; Hiraki, H.; Vogt, T.; Kroiher, M.; Kohara, Y.; Schierenberg, E. Differences in the genetic control of early egg development and reproduction between C. elegans and its parthenogenetic relative D. coronatus. Evodevo 2017, 8, 16, doi: 10.1186/s13227-017-0081-y.
[8]
Tostivint, H. Evolution of the gonadotropin-releasing hormone (GnRH) gene family in relation to vertebrate tetraploidizations. Gen Comp Endocrinol 2011, 170, 575-581, doi: 10.1016/j.ygcen.2010.11.017.
[9]
Alvarez, E.; Cahoreau, C.; Combarnous, Y. Comparative structure analyses of cystine knot-containing molecules with eight aminoacyl ring including glycoprotein hormones (GPH) alpha and beta subunits and GPH-related A2 (GPA2) and B5 (GPB5) molecules. Reprod Biol Endocrinol 2009, 7, 90, doi: 10.1186/1477-7827-7-90.
[10]
Cahoreau, C.; Klett, D.; Combarnous, Y. Structure-function relationships of glycoprotein hormones and their subunits' ancestors. Front Endocrinol (Lausanne) 2015, 6, 26, doi: 10.3389/fendo.2015.00026.
[11]
Dos Santos, S.; Mazan, S.; Venkatesh, B.; Cohen-Tannoudji, J.; Querat, B. Emergence and evolution of the glycoprotein hormone and neurotrophin gene families in vertebrates. BMC Evol Biol 2011, 11, 332, doi: 10.1186/1471-2148-11-332.
[12]
Mo, Y.; Peng, P.; Zhou, R.; He, Z.; Huang, L.; Yang, D. Regulation of gonadotropin-releasing hormone (GnRH) receptor-I expression in the pituitary and ovary by a GnRH agonist and antagonist. Reprod Sci 2010, 17, 68-77, doi: 10.1177/1933719109348026.
[13]
Armstrong, S. P.; Caunt, C. J.; Fowkes, R. C.; Tsaneva-Atanasova, K.; McArdle, C. A. Pulsatile and sustained gonadotropin-releasing hormone (GnRH) receptor signaling: does the ERK signaling pathway decode GnRH pulse frequency? J Biol Chem 2010, 285, 24360-24371, doi: 10.1074/jbc.M110.115964.
[14]
Reiter, E.; Ahn, S.; Shukla, A. K.; Lefkowitz, R. J. Molecular mechanism of beta-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol 2012, 52, 179-197, doi: 10.1146/annurev.pharmtox.010909.105800.
[15]
Gustafsson, J. A. Historical overview of nuclear receptors. J Steroid Biochem Mol Biol 2016, 157, 3-6, doi: 10.1016/j.jsbmb.2015.03.004.
[16]
Badruzzaman, M.; Bapary, M. A.; Takemura, A. Possible roles of photoperiod and melatonin in reproductive activity via changes in dopaminergic activity in the brain of a tropical damselfish, Chrysiptera cyanea. Gen Comp Endocrinol 2013, 194, 240-247, doi: 10.1016/j.ygcen.2013.09.012.
[17]
Abecia, J. A.; Chemineau, P.; Gomez, A.; Keller, M.; Forcada, F.; Delgadillo, J. A. Presence of photoperiod-melatonin-induced, sexually-activated rams in spring advances puberty in autumn-born ewe lambs. Anim Reprod Sci 2016, 170, 114-120, doi: 10.1016/j.anireprosci.2016.04.011.
[18]
Rak, A.; Mellouk, N.; Froment, P.; Dupont, J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction 2017, 153, R215-R226, doi: 10.1530/REP-17-0002.
[19]
VanBrocklin, H. F.; Brodack, J. W.; Mathias, C. J.; Welch, M. J.; Katzenellenbogen, J. A.; Keenan, J. F.; Mizejewski, G. J. Binding of 16 alpha-[18F]fluoro-17 beta-estradiol to alphafetoprotein in Sprague-Dawley female rats affects blood levels. Int J Rad Appl Instrum B 1990, 17, 769-773.
[20]
de Bournonville, C.; Ball, G. F.; Balthazart, J.; Cornil, C. A. Rapid changes in brain aromatase activity in the female quail brain following expression of sexual behaviour. J Neuroendocrinol 2017, 29, doi: 10.1111/jne.12542.
[21]
Forger, N. G. Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2016, 371, 20150114, doi: 10.1098/rstb.2015.0114.
[22]
Morozova, S. V.; Savvateeva, D. M.; Svistushkin, V. M.; Toporkova, L. A. [The role of the vomeronasal system in the formation of the human sexual behaviour]. Vestn Otorinolaringol 2017, 82, 90-94, doi: 10.17116/otorino201782190-94.
[23]
Tanaka, M.; Enatsu, N.; Chiba, K.; Fujisawa, M. Two cases of reversible male infertility due to congenital adrenal hyperplasia combined with testicular adrenal rest tumor. Reprod Med Biol 2018, 17, 93-97, doi: 10.1002/rmb2.12068.
[24]
Berenbaum, S. A.; Beltz, A. M.; Bryk, K.; McHale, S. Gendered Peer Involvement in Girls with Congenital Adrenal Hyperplasia: Effects of Prenatal Androgens, Gendered Activities, and Gender Cognitions. Arch Sex Behav 2018, 47, 915-929, doi: 10.1007/s10508-017-1112-4.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved