Antibacterial Activity of Enterocins EFC21 and EFT194 on Food-Borne Pathogenic Bacteria Strains
Six hundred and fifty-eight Enterococcus faecalis strains of canteen origin were tested against Listeria monocytogenes and Staphylococcus aureus (as indicators) for detection of enterocin producers using stab-overlay method. The result reveals highest percentage (48.13%) in E. faecalis from bukataria. This was followed by 36.22% and 8.33% in isolates from school and fast-food canteens respectively. Two bacteriocin-producing Enterococcus faecalis strains (EFT194 and EFC21) that produced highest zone of inhibition (20.5 and 22mm respectively) were selected for enterocin purification and antibacterial screening against some Gram positive and gram negative food-borne pathogens including; Bacillus cereus, Listeria monocytogenes, Clostridium perfringens, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and Salmonella typhi ) isolated from diary and meat products. The apparent purity of the enterocins was determined by cation–exchange chromatography. Enterocin from EFC21 and EFT194 were purified at 11 and 8 fold respectively, with yield of 2.2% and 4.5% respectively. It was confirmed that both Enterocin from EFC21 and EFT194 tested positive for antibacterial effects on food-borne pathogenic bacteria, though enterocin EFC21 proved to be more potent. Higher antibacterial effects were observed on the gram-positive than the gram-negative pathogens. Further investigation on enterocins EFC21 and EFT194 is essential to confirm their suitability as food preservatives and control drugs for certain bacterial infections.
Enterococcus faecalis, Enterocin, Food-Borne Pathogens, Preservative
[1]
Cintas, L. M., Casaus, P., Håvarstein, L. S. Herna´ndez, P. E., and Nes, I. F.(1997). Biochemical and genetic characterization of enterocinP, a novel secdependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl. Environ. Microbiol. 63:4321–4330.
[2]
Cintas, L. M., Casaus, P., Herranz, C., Håvarstein, L. S., Holo, H., Herna´ndez, P. E. and Nes, I. F.(2000). Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the secdependent enterocin P, and a novel bacteriocin secreted without an Nterminal extension termed enterocin Q. J. Bacteriol. 182:6806-6814.
[3]
Cintas, L. M., Casaus, P., Herranz, C., Nes, I. F. and Herna´ndez, P. E. (2001). Bacteriocins of lactic acid bacteria. Food Sci. Technol. Int. 7:281–305.
[4]
Cleveland, J., Montville, T. J., Nes, I. F. and Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 71:1-20.
[5]
Cookson, A. L., Noel, S. J., Kelly, W. J. and Attwood, G. T. (2004). The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep. FEMS Microbiol. Ecol. 48:1199-1207.
[6]
Criado, R., Diep, D. B., Aakra, A., Gutierrez, J., Nes, I. F., Hernandez, P. E. and Cintas, L. M. (2006). Complete sequence of the enterocin Q-encoding plasmid pCIZ2 from the multiple bacteriocin producer Enterococcus faecium L50 and genetic characterization of enterocin Q. Production and immunity. Appl. Environ. Microbiol. 72:6653–6666.
[7]
De Vuyst, L., Moreno, M. R. F. and Revets, H. (2003). Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int. J. Food Microbiol. 84:299–318.
[8]
De Jong, A., Hijum, S. A. F. T., Bijlsma, J. J. E., Kok, J. and Kuipers, O. P. (2006). BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res. 34:273-279.
[9]
Drider, D., Fimland, G., Hechard, Y., McMullen, L. M. and Prevost, H. (2006). The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Rev.70:564-582.
[10]
Eaton, T. J. and Gasson, M. J. (2001). Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl. Environ. Microbiol. 67:1628-1635.
[11]
Eijsink, V. G. H., Axelsson, L. Diep, D. B., Håvarstein, L. S., Holo, H. and Nes, I. F. (2002). Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Leeuwenhoek 81:639–654.
[12]
Ennahar, S., Sonomoto, K. and Ishizaki, A. (1999). Class IIa bacteriocins from lactic acid bacteria: antibacterial activity and food preservation. J. Biosci. Bioeng. 87:705–716.
[13]
Franz, C. M. A. P., Muscholl-Silberhorn, A. B., Yousif, N. M. K., Vancanneyt, M., Swings, J. and Holzapfel, W. H. (2001). Incidence of virulence factors and antibiotic resistance among enterococci isolated from food. Appl. Environ. Microbiol. 67:4385–4389.
[14]
Guchi, T., K., Kaminaka, J., Shima, S., Kawamoto, K., Mori, S. H., Choi, K., Ohmomo, D. S. and Ogata S. (2002). Isolation and characterization of enterocin SE-K4 produced by thermophilic enterococci, Enterococcus faecalis K-4. Biosci. Biotechnol. Biochem. 65:247–253.
[15]
Gutie´rrez, J., Criado, R., Citti, R., Martı´n, M., Herranz, C., Ferna´ndez, M. F., Cintas, L. M. and Herna´ndez, P. E. (2004). Performance and applications of polyclonal anti-peptide antibodies specific for the enterococcal bacteriocin enterocin P. J. Agric. Food Chem. 52:2247–2255.
[16]
Hayakawa, D. M., Emily, T. M., Namita, T. A., Yousuf, B. S., Harish, P. H., Kotra, A. H., Suchitha, B. P., Satyam, P. S., Kumar, A. V., Kimberly, K. V., Yee, J. S., Jason, M. P., Paul, R. L., Michael, J. R. and Keith, S. K. (2012). Comparison of the clinical characteristics and outcomes associated with Vancomycin-Resistant Enterococcus faecalis and Vancomycin-Resistant E. faecium bacteremia. Antimicrobial Agents and Chemotherapy. 56(5): 2452–2458.
[17]
Herna´ndez, E. P., Gutie´rrez, J., Criado, R., Martı´n, M., Herranz, C., and Cintas, L. M. (2005): Production of Enterocin P, an Antilisterial Pediocin-Like Bacteriocin from Enterococcus faecium P13, in Pichia pastoris. Antimicrob. Agents Chemother. 49(7):3004.
[18]
Herranz, C., Cintas, L. M., Herna´ndez, P. E., Moll, G. N. and Driessen, A. J. M. (2001). Enterocin P causes potassium ion efflux from Enterococcus faecium T136 cells. Antimicrob. Agents Chemother. 45:901-904.
[19]
Hurst, A. (1981). Nisin. Adv. Appl. Microbiol. 27:85-123.
[20]
Kato, T., Inuzuka, L., Kondo, M. and Matsuda, T. (2001). Growth of nisinproducing lactococci in cooked rice supplemented with soybean extract and its application to inhibition of Bacillus subtilis in rice miso. Biosci. Biotechnol. Biochem. 65:330-338.
[21]
Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev.12:39–85.
[22]
Konings, W. N., Kok, J., Kuipers, O. P. and Poolman, B. (2000). Lactic acid bacteria: the bugs of the new millennium. Curr. Opin. Microbiol. 3:276-282.
[23]
Maqueda, M., Galvez, A., Bueno, M. M., Sanchez-Barrena, M. J., Gonzalez, C., Albert, A., Rico, M. and Valdivia, E. (2004). Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr. Protein Pept. Sci. 5:399-416.
[24]
Nes, I. F. and Holo, H. (2000). Class II antimicrobial peptides from lactic acid bacteria. Biopolymers 55:50-61.
[25]
Nes, I. F., Diep, D. B. and Holo, H. (2007). Bacteriocin Diversity in Streptococcus and Enterococcus_ J. Bacteriol. 189(4):1189.
[26]
O’Sullivan, L., Ross, R. P. and Hill, C. (2002). Potential of bacteriocin producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604.
[27]
Sablon, E., Contreras, B. and Vandamme, E. (2000). Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv. Biochem. Eng. Biotechnol. 68:21-60.
[28]
Zhang, H., Yoshida, S., Aizawa, T., Murakami, R., Suzuki, M., Koganezawa, N., Matsuura, A., Miyazawa, M., Kawano, K., Nitta, K. and Kato, Y. (2000). In vitro antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum. Antimicrob. Agents Chemother. 44:2701-2705.
[29]
Zhou, X. and Wang, X. (2011). Characterization of pathogenic or non-pathogenic Enterococcus faecalis isolated from lambs from Xinjiang, a remove North-west province of China. African Journal of Microbiology Research. 5(18): 2827-2833.
[30]
A. Gálvez, M. Maqueda, E. Valdivia, A. Quesada, E. Montoya (1986).Characterization and partial purification of a broad spectrum antibiotic AS-48 produced by Streptococcus faecalis Can. J. Microbiol., 32, 765–771.
[31]
A. Gálvez, M. Maqueda, M. Martínez-Bueno, E. Valdivia (1989). Bactericidal and bacteriolytic action of peptide antibiotic AS-48 against Gram-positive and Gram-negative bacteria and other organisms. Res. Microbiol., 140, pp. 57–68.
[32]
A. Gálvez, E. Valdivia, M. Martínez, M. Maqueda (1989). Effect of peptide AS-48 on Enterococcus faecalis subsp. liquefaciens S-47. Antimicrob. Agents Chemother., 33, 641–645.
[33]
M. Maqueda, A. Gálvez, M. Martínez Bueno, M.J. Sánchez-Barrena, C. González, A. Albert, M. Rico, E. Valdivia (2004). Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr. Prot. Pept. Sci., 5,399–416.
[34]
M. Maqueda, M. Sánchez-Hidalgo, M. Fernández, M. Montalbán-López, E. Valdivia, M. Martínez-Bueno (2008).Genetic features of circular bacteriocins produced by Gram-Positive bacteria. FEMS Microbiol. Rev., 32,2–22.
[35]
H. Abriouel, E. Valdivia, A. Gálvez, M. Maqueda (1998). Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Appl. Environ. Microbiol., 64, 4623–4626.
[36]
H. Abriouel, M. Maqueda, A. Gálvez, M. Martínez-Bueno, E. Valdivia (2002). Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48 .Appl. Environ. Microbiol., 68, 1473–1477.
[37]
C. González, G.M. Langdon, M. Bruix, A. Gálvez, E. Valdivia, M. Maqueda, M. Rico (2000). Bacteriocin AS-48, a cyclic polypeptide structurally and functionally related to mammalian NK-lysin, Proc. Natl. Acad. Sci. USA, 97, 11221–11226.
[38]
AO El-Gendy, TM Essam, MA Amin, SH Ahmed, IF Nes (2012). Clinical Screening for Bacteriocinogenic Enterococcus faecalis Isolated from Intensive Care Unit Inpatient in Egypt. Journal of Microbial & Biochemical Technology 4 (7), 161-167.