Brief Review on Bacterial Resistance in K. Pneumoniae
[1]
Maria Daiane Lopes Moreira, LABIAM - Laboratory of Environmental Biology and Microbiology, Federal Institute of Education, Science and Technology of Ceará, Acaraú, Brazil.
[2]
Manuela Araújo Carneiro, LABIAM - Laboratory of Environmental Biology and Microbiology, Federal Institute of Education, Science and Technology of Ceará, Acaraú, Brazil.
[3]
José Ednésio da Cruz Freire, Faculty of Pharmacy, UNINASAU, Fortaleza, Brazil.
[4]
José Gerardo Carneiro, LABIAM - Laboratory of Environmental Biology and Microbiology, Federal Institute of Education, Science and Technology of Ceará, Acaraú, Brazil.
In recent years, clinical and scientific interest in so-called beta-lactams has been largely due to the large number of reports of multidrug-resistant Gram-negative bacteria. being the indiscriminate use of antibiotics the main factor responsible for the increase of bacterial resistance, which in turn refers to the ability of certain bacteria to resist antimicrobial agents, result of the selective pressure generated by the inadequate use of antibiotics, where initially sensitive microbial populations, are gradually replaced by more resilient populations. The main mechanism of resistance of gram-negative bacteria is the production of β-lactamase enzymes, capable of hydrolyzing β-lactam antibiotics. Carbapenem antibiotics are widely used to combat multiresistant gram-negative bacteria that produce extended-spectrum β-lactamases (ESBLs). The enzyme Klebisiella Pneumoniae Carbapenemase (KPC), is a class A carbapenemase enzyme, encoded by the blaKPC gene, which is located in transmissible plasmids and is very prevalent, especially in enterobacteria. Some bacteria have developed resistance to carbapenems by KPC production, first identified in a Klebisiella pneumoniae isolate in North Carolina (USA), encoded by the blaKPC gene. Another class A enzyme carbapenemase was identified in Brazil, Brasiliensis Klebisiella Carbapenemase (BKC-1), encoded by the blaBKC-1 gene. Some measures that delay the increase of microbial resistance and reduce the proliferation of resistant microorganisms are the prudent use of antibiotics, hygienic habits on the part of health professionals and the control of the use of antibiotics in veterinary practice and animal production.
β-Lactam Resistance, Carbapenemase, Klebisiella, KPC
[1]
FINCH, Roger G. et al. Educational interventions to improve antibiotic use in the community: report from the International Forum on Antibiotic Resistance (IFAR) colloquium, 2002. The Lancet infectious diseases, v. 4, n. 1, p. 44-53, 2004.
[2]
WORLD HEALTH ORGANIZATION. Antimicrobial Resistance: Global Report on Surveillance. (WHO Press, 2014).
[3]
SANTOS DE QUEIROZ, Neusa. A resistência bacteriana no contexto da infecção hospitalar. Texto & Contexto Enfermagem, v. 13, n. Esp, p. 64-70, 2004.
[4]
AREND, Lavinia Nery Villa Stangler. Caracterização molecular, fenotípica e epidemiológica de micro-organismos produtores de carbapenemase KPC isolados no Estado do Paraná. 2014.
[5]
FICA, C. Alberto. Resistencia antibiótica em bacilos gram negativos, cocáceas gram positivas y anaeróbios: Implicancias terapêuticas. Revista Médica Clínica Las Condes, v. 25, n. 3, p. 432-444, 2014.
[6]
AMBRETTI, Simone et al. A carbapenem-resistant Klebsiella pneumoniae isolate harboring KPC-1 from Italy. New Microbiologica, v. 33, n. 3, p. 281-282, 2010.
[7]
DIENE, Seydina M.; ROLAIN, J.‐M. Carbapenemase genes and genetic platforms in Gram‐negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species. Clinical Microbiology and Infection, v. 20, n. 9, p. 831-838, 2014.
[8]
CANTÓN, Rafael et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clinical Microbiology and Infection, v. 18, n. 5, p. 413-431, 2012.
[9]
YIGIT, Hesna et al. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial agents and chemotherapy, v. 45, n. 4, p. 1151-1161, 2001.
[10]
NICOLETTI, Adriana Giannini et al. Characterization of BKC-1 class A carbapenemase from Klebsiella pneumoniae clinical isolates in Brazil. Antimicrobial agents and chemotherapy, p. AAC. 00158-15, 2015.
[11]
HERNÁNDEZ-GOMEZ, Cristhian et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia. Biomédica, Bogotá, v. 34, p. 91-100. Abr. 2014.
[12]
GIEDRAITIENĖ, Agnė et al. Antibiotic resistance mechanisms of clinically important bacteria. Medicina, v. 47, n. 3, p. 19, 2011.
[13]
LIVERMORE, David M. Minimising antibiotic resistance. The Lancet infectious diseases, v. 5, n. 7, p. 450-459, 2005.
[14]
BRICENO, David Felipe et al. Atualização da resistência antimicrobiana de bacilos Gram-negativos isolados em hospitais colombianos de nível III: anos de 2006, 2007 e 2008. Biomédico, Bogotá, v. 30, n. 2. 2010.
[15]
HRUBY, C. E. et al. Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils. Journal of environmental management, v. 171, p. 60-69, 2016.
[16]
DAHMS, Carmen et al. Mini-review: Epidemiology and zoonotic potential of multiresistant bacteria and Clostridium difficile in livestock and food. GMS hygiene and infection control, v. 9, n. 3, 2014.
[17]
HAWKEY, Peter M. The origins and molecular basis of antibiotic resistance. BMJ: British Medical Journal, v. 317, n. 7159, p. 657, 1998.
[18]
NORDMANN, Patrice; CUZON, Gaelle; NAAS, Thierry. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. The Lancet infectious diseases, v. 9, n. 4, p. 228-236, 2009.
[19]
DELCOUR, Anne H. Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, v. 1794, n. 5, p. 808-816, 2009.
[20]
VAISHNAVI, C. et al. Translocation of gut flora and its role in sepsis. Indian journal of medical microbiology, v. 31, n. 4, p. 334, 2013.
[21]
DANDACHI, Iman et al. Prevalence and Emergency of Gram-Negative Bacteria Resistant to Cephalosporin, Carbapenem and Colostin Resistance of Animal Origin in the Mediterranean Basin. Frontiers in Microbiology, v. 9. 2018.
[22]
HAWKEY, Peter M.; JONES, Annie M. The changing epidemiology of resistance. Journal of Antimicrobial Chemotherapy, v. 64, n. suppl_1, p. i3-i10, 2009.
[23]
BUSH, Karen; JACOBY, George A.; MEDEIROS, Antone A. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial agents and chemotherapy, v. 39, n. 6, p. 1211, 1995.
[24]
AMBLER, Richard P. The structure of β-lactamases. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 289, n. 1036, p. 321-331, 1980.
[25]
PATERSON, David L. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. The American Journal of Madicine, 6. ed, v. 119, p. 20-28. 2006.
[26]
YAURI, María Fernanda; ALCOCER, Iliana; RIGLOS, Mercedes Rodríguez. Caracterización de la región variable de integrones clase 1 en aislados clínicos de Klebsiella pneumoniae resistentes a carbapenemes. Revista Ecuatoriana de Medicina y Ciencias Biológicas: REMCB, v. 37, n. 2, p. 31-38, 2016.
[27]
BRATU, Simona et al. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Archives of internal medicine, v. 165, n. 12, p. 1430-1435, 2005.
[28]
ROJAS, Laura J. et al. An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the “Perfect Storm”. The Journal of infectious diseases, v. 217, n. 1, p. 82-92, 2017.
[29]
BUSH, Karen; FISHER, Jed F. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual review of microbiology, v. 65, p. 455-478, 2011.
[30]
TOLENTINO, Fernanda Modesto et al. Endemicity of the High-Risk Clone Klebsiella pneumoniae ST340 Coproducing QnrB, CTX-M-15, and KPC-2 in a Brazilian Hospital. Microbial Drug Resistance, 2018.
[31]
MONTEIRO, Jussimara et al. First report of KPC-2-producing Klebsiella pneumoniae strains in Brazil. Antimicrobial agents and chemotherapy, v. 53, n. 1, p. 333-334, 2009.
[32]
NORDMANN, P.; GNIADKOWSKI, M.; GISKE C. G.; POIREL, L.; WOODFORD, N.; MIRIAGOU, V. Rede Europeia sobre Carbapenemases. Identificação e triagem de Enterobacteriaceae produtoras de carbapenemases. Clin Microbiol Infect 18: 432-438. 2012.
[33]
SAMPAIO, J. L. M.; GALES, A. C. Antimicrobial resistance in Enterobacteriaceae in Brazil: focus on b-lactams and polymyxins. Brazilian Journal Of Microbiology, v.47, p.31–37, 2016.
[34]
QUEENAN, A. M.; BUSH K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 20 (3): 440-458. 2007.
[35]
PAVEZ, M.; MAMIZUKA, E. M.; LINCOPAN, N. Early dissemination of KPC-2-producing Klebsiella pneumonia strains in Brazil. Antimicrob Agents Chemother. 53 (6): 2702. 2009.
[36]
PEREIRA, P. S.; DE ARAUJO, C. F.; SEKI, L. M.; ZAHNER, V.; CARVALHO-ASSEF, A. P.; ASENSI, M. D. Update of the molecular epidemiology of KPC-2-producing Klebsiella pneumoniae in Brazil: spread of clonal complex 11 (ST11, ST437 and ST340). J Antimicrob Chemother 68: 312–316. 2013.
[37]
ALVAREZ, Carlos et al. Resistencia antimicrobiana em Unidades de Cuidado Intensivo de Bogotá, Colombia, 2001-2003. Revista de Salud Publica. v. 8, p. 86-101, 2006.
[38]
LOUREIRO, Rui João et al. O uso de antibióticos e as resistências bacterianas: breves notas sobre sua evolução. Revista Portuguesa de Saúde Pública, v. 34, n. 1, p. 77-84. 2016.