Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Sea Surface Temperature Climatology over Zhoushan Sea
Current Issue
Volume 3, 2016
Issue 1 (January)
Pages: 1-5   |   Vol. 3, No. 1, January 2016   |   Follow on         
Paper in PDF Downloads: 114   Since Jun. 24, 2016 Views: 1719   Since Jun. 24, 2016
Authors
[1]
M. V. Subrahmanyam, Coastal Ocean Dynamics, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China.
[2]
Zhang Qiaohua, Coastal Ocean Dynamics, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China.
[3]
B. Pushpanjali, Department of Environmental Science, Acharya Nagarjuna University, Guntur, India.
Abstract
Sea Surface Temperature (SST) is an important parameter in climate studies. Climatological SST data has been used to study seasonal, annual and decadal variations over Zhoushan, Zhejiang, China. The seasonal variations of SST Anomalies indicating that in summer season showing higher than other seasons. However, autumn season is showing lower anomalies than other seasons. Latitudinal variations compared over Zhoushan (28-32°N); lower latitude shows higher anomalies in winter season and lower anomalies at high latitude. Annual variations are indicating a decrease trend up to 1940; however, there is an increasing trend observed since 1940. 32°N shows higher anomalies than other latitudes. Since 1940, there are wide deviations can be observed in decadal variations.
Keywords
Zhoushan Sea, Sea Surface Temperature Anomalies, Wind, River Discharge, Insolation
Reference
[1]
XueBin Zhang, Jian Sheng, Amir Shabbar., Modes of Interannual and Interdecadal Variability of Pacific SST, J Clim. 01/1998; 11(10): 2556-2569. DOI:10.1175/1520-0442(1998)0112.0.CO; 2m (1998).
[2]
Kawai, Yoshimi and Wada, Akiyoshi., Diurnal Sea surface temperature variation and its impact on the atmosphere and ocean: A review, Journal of Oceanography, 63, 5, 721-744 (2007).
[3]
Frankignoul, C., Sea surface temperature anomalies, planetary waves and air–sea feedback in the middle latitudes, Rev. Geophys., 23, 357–390 (1985).
[4]
Cayan, D., Latent and sensible heat flux anomalies over the Northern Oceans: Driving the sea surface temperature, J. Phys. Oceanogr., 22, 859–881 (1992).
[5]
Deser C, Phillips AS, Alexander MA., Twentieth century tropical sea surface temperature trends revisited, Geophys Res Lett 37: L10701. Doi:10.1029/2010GL043321 (2010).
[6]
Benjamin S. Giese, Niall C. Slowey, Sulagna Ray, Gilbert P. Compo, Prashant D. Sardeshmukh, James A. Carton, and Jeffrey S. Whitaker., The 1918/19 El Niño, Bull. Amer. Meteor. Soc., 91, 177–183 (2010).
[7]
Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF., El Nino in a changing climate, Nature 461: 511–514. doi:10.1038/nature08316 (2009).
[8]
Ashok K, Yamagata T., Climate change: the El Nino with a difference, Nature 461: 481–484. doi:10.1038/461481a (2009).
[9]
Lee T, McPhaden MJ., Increasing intensity of El Nino in the central-equatorial Pacific, Geophys Res Lett 37: L14603. doi:10.1029/2010GL044007 (2010).
[10]
McPhaden MJ, Lee T, McClurg D., El Nino and its relationship to changing background conditions in the Tropical Pacific Ocean, Geophys Res Lett 38: L15709. doi:10.1029/2011GL048275 (2011).
[11]
Michelle L L’Heureux, Dan C Collins, Zeng-Zhen Hu., Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño-Southern Oscillation, Clim dyn, 40, 1223-1236, doi: 10.1007/s00382-012-1331-2 (2013).
[12]
Xue, Y., T. M. Smith, and R. W. Reynolds, Interdecadal changes of 30-yr SST normals during 1871-2000, J. Climate, 16, 1601-1612 (2003).
[13]
Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006), J. Climate, 21, 2283–2296 (2008).
[14]
Woodruff, S. D., Slutz, R. J., Jenne, R. L., and P. M. Steurer, A comprehensive ocean-atmosphere data set, Bull. Amer. Meteor. Soc., 68, 1239-1250 (1987).
[15]
Hinata, T., Seasonal variation and long-term trends of the oceanographic conditions along a fixed hydro-graphic line crossing the Kuroshio in the East China Sea, Oceangr. Mag. 45: 9-32 (1996).
[16]
Imawaki, S., H. Uchida, H. Ichikawa et al., Satellite altimeter monitoring the Kuroshio transport south of Japan. Geophys. Res. Lett. 28: 17-20 (2001).
[17]
Zhang Caiyun, Chen Ge., SST variations of the Kuroshio from AVHRR observation, Chinese Journal of Oceanology and Limnology Vol. 24 No. 4, P. 345-351 (2006).
[18]
Milliman J, Syvitski J., Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers, The Journal of Geology, 100: 525–544 (1992).
[19]
Milliman J, Meade R., World-wide delivery of river sediment to the oceans, Journal of Geology, 91(1): 1–21 (1983)
[20]
ECCHE (Editorial Committee for Chinese Harbors and Embayments)., Chinese Harbours and Embayments (Part V) (in Chinese), Beijing: China Ocean Press, (1992).
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved