Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Nutritional, Anti-nutritional and Phytochemical Profile of the Leaves and Fruits of Synsepalum dulcificum (Schumach. & Thonn.) Daniell
Current Issue
Volume 7, 2019
Issue 3 (June)
Pages: 53-59   |   Vol. 7, No. 3, June 2019   |   Follow on         
Paper in PDF Downloads: 39   Since Jun. 27, 2019 Views: 1168   Since Jun. 27, 2019
Olamilekan Lanre Awotedu, Forestry Research Institute of Nigeria, Jericho Hills, Ibadan, Oyo State, Nigeria.
Paul Oluwatimilehin Ogunbamowo, Forestry Research Institute of Nigeria, Jericho Hills, Ibadan, Oyo State, Nigeria.
Synsepalum dulcificum (Sapotaceae) also known as a miracle berry is an evergreen shrub that is native to tropical West Africa. This berry has an attribute of modifying sour taste into a sweet taste. This study investigated the nutritional, anti-nutritional and phytochemical compositions of the leaves and whole fruit of Synsepalum dulcificum. Proximate composition (moisture content, crude protein, fats, crude fiber, carbohydrate and ash content); Mineral composition (calcium, magnesium, potassium, sodium, zinc, iron, copper and manganese); Anti-nutritional factors (oxalate, phytate, nitrate) and Qualitative and Quantitative phytochemicals assays (flavonoids, phenol, alkaloids, saponin, glycoside and tannin) were determined using standard methods. Results shows the following trend for Proximate composition: carbohydrate (40.38 and 17.44)%, crude fiber (17.58 and 3.63)%, crude protein (8.42 and 10.26)%, ash content (2.87 and 3.95)%, crude fat (1.97 and 2.32)% and moisture content (28.78 and 62.40)%; Mineral content: macronutrient - calcium (4100 and 1395) mg/kg, magnesium (300.8 and 2678.8) mg/kg, potassium (2500 and 2900) mg/kg, sodium (1986 and 1531) mg/kg, micronutrients - zinc (52 and 17) mg/kg, iron (243 and 102) mg/kg, copper (48 and 89) mg/kg, manganese (44 and 34) mg/kg; Anti-nutrients: oxalate (31.5 and 28.5) mg/100g, phytate (59.9 and 34.7) mg/100g, nitrate (180 and 95) mg/100g; Phytochemicals: alkaloid (0.90 and 1.37)%. flavonoids (0.12 and 0.58)%, cardiac glycosides (0.06 and 0.14)%, tannins (0.65 and 0.34)%, phenol (0.147 and 0.231)% and anthraquinones (0.006 and Not Detected)% for the leaves and whole fruits respectively. S. dulcificum, leaves, and whole fruit could potentially be a good source of nutrients with minimal levels of anti-nutritional factors thus, safe for human consumption.
Synsepalum dulcificum, Proximate, Anti-nutrition, Mineral Elements, Phytochemicals
Dahanuka S. A., Kulkarni R. A., Rege N. N. (2000). Pharmacology of medicinal plants and natural products. Indian J. Pharmacol. 32: 81-118.
Farombi E. O. Fakoya A. (2005). Free radical scavenging and antigenotoxic activities of natural phenolic compounds in dried flowers of Hibiscus sabdariffa. Mol. Nutr. Food Res. 49: 1120-1128.
Leverin G. and McMatron H. (1999). Alkaloids and glycosides. Clin. Microbiol. Rev. 11: 156-250.
Abara A. E. (2003). Tannin content of Dioscorea bulbufera. J. Chem. Society. 28: 55-56.
Agbaire P. O., Emoyan O. O. (2012). Nutritional and antinutritional levels of some local vegetables from Delta State. Nig. Afr. J. Food Sci. 2012; 6: 8-11.
Achigan-dako E. G. Tchokponhoue D. E. Sognigbe N. Gebauer J. Vodouhe R. S. (2015). Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genet Resource Crop Evolution, 62 (1): 465–476. https://doi.org/10.1007/s10722-015-0225-7
Chen C. Y., Wang Y. D., Wang H. M. (2010). Chemical constituents from the leaves of Synsepalum dulcificum. Chem. Nat Compounds. 46 (3): 495.
Koizumi A. (2011): Human sweet taste receptor mediates acid-induced sweetness of miraculin. Proceedings of the National Academy of Sciences. Available at: http://www.pnas.org/content/early/2011/09/16/1016644108.\
McCurry J. (2005). ‘‘Miracle berry lets Japanese dieters get sweet from sour’’. London: The Guardian, Available at://www.guardian.co.uk/world/2005/nov/25/japan.foodanddrink.
Chen C. C., Liu I. M. and Cheng J. T. (2006). Improvement of insulin resistance by miracle fruit (Synsepalum dulcificum) in fructose-rich chow-fed rats. Phytotherapy Res. 20 (11): 987-992.
Wong J. M. and Kern M. (2011). Miracle fruit improves sweetness of a low-calorie dessert without promoting subsequent energy compensation. Appetite. 56 (1): 163-166.
Inglett G. E., Chen D. (2011). Contents of phenolics and flavonods and antioxidant activities in skin, pulp, and seeds of miracle fruit. J. of Food Sci. 76 (3): 479-481.
Jeremiah O. J., Ilesanmi O. R., Ige M. M. (2015). Proximate and mineral composition of Synsepalum dulcificum seed. Scientific Research Journal. III (III): 1–5.
Osabor V. N., Etiuma R. A., & Ntinya M. U. (2016). Chemical profile of leaves and roots of miracle fruit (Synsepalum dulcificum). American Chemical Science Journal. 12 (1): 1–8. https://doi.org/10.9734/ACSJ/2016/20456
Agblekpe A. K., Osseyi E. and Dossou J. (2016). Potential nutritional values of skin, pulp and seed of miracle fruit (Synsepalum dulcificum). American Journal of Innovative Research and Applied Sciences. 4 (1): 1-7.
Nkwocha C., Njoku O. and Ekwueme F. (2014). Proximate and micronutrient analyses of Synsepalum dulcificum. Scientific Research Journal (SCIRJ). 2 (1): 71–74.
Njoku N. E., Ubbaonu C. N., Alagbaoso S. O., Agunwa I. M., Eluchie C. N. (2016). Proximate, anti-nutritional and phytochemical composition of the yellow variety of the Synsepalum dulcificum (Miracle Fruit) Berry. American Journal of Food Science and Technology. 4 (4): 102-108. Available: Available on: http://pubs.sciepub.com/ajfst/4/4/3 © Science and Education Publishing DOI: 10.12691/ajfst-4-4-3.
Mangla B., & Kohli K. (2018). Pharmaceutical and therapeutic potential of miraculin and miracle berry. Tropical Journal of Natural Product Research. 2 (1): 12–17.
Akinmoladun A. C. (2016). Effect of Synseplum dulcificum berry extract on oxidtive stress and hepatotoxicity indices, follwing subacute adminiatration in normal rats. FUTA Journal of Research in Sciences. 12 (1): 167–177.
AOAC (2000). Official method of Analysis of the Association of Official Analytical Chemist (AOAC) International 17th ed. Horowitz Maryland 1: 12-20.
Oshodi A. A., Ogungbenle H. N. and Oladimeji M. O. (1999). Chemical composition, nutritionally valuable minerals and functional properties of benniseed (Sesamum radiatum), pearl millet (Pennisetum typoides) and quinoa (Chenopodium quinoa) flours. Int. J. Food Sci. Nutr. 50: 325-331.
Agbaire P. O. (2011). Nutritional and anti-nutritional levels of some local vegetables (Vernomia amygdalina, Manihot esculenta, Teiferia occidentalis, Talinum triangulare, Amaranthus spinosus) from Delta State, Nigeria. Journal of Applied Science and Environmental Management. 15 (4): 625–628.
Pearson D. A. (1976). Chemical analysis of foods. 7th Edition. Church Hill Livingstone, New York. 1: 422-511.
Sjoberg A. M. K. and Alanka T. A. (1994). Spectrophotometric determination of nitrate in baby food: collaborative study. Journal of AOAC International. 77 (2): 425-430.
Boye A. G., Koffuor G. A., Boampong J. N., Amoateng P. A., Ameyaw E. O., Ansah E. O. Addai G. M., Adjei C. K., Addo J. and Penu D. K. A. (2012). Gastroprotective effect and safety assessment of Zanthoxylum zanthoxyloides (Lam) Waterm root bark extract’ American Journal of Pharmacy and Toxicology. 7 (2): 73–80.
Omoruyi B. E., Bradley G. and Afolayan A. J. (2012). Antioxidant and phytochemical properties of Carpobrotus edulis (L.) bolus leaf used for the management of common infections in HIV/AIDS patients in Eastern Cape Province’, BMC Complementary and Alternative Medicine. 12: 215.
Association of Official Analytical Chemists (AOAC), 1990. Official Methods of Analysis. 16th Edn., Washington, DC, 1: 600-792.
Voet D. J., Voet J. G. and Pratt C. W. (2008). The Principles of Biochemistry. 3rd Edn., John Wiley and Sons 111 River Street, Hoboken, pp: 74-219.
Bamishaiye E. I., Olayemi F. F., Awagu E. F., & Bamshaiye O. M. (2011). Proximate and phytochemical composition of Moringa oleifera leaves at three stages of maturation. Advance Journal of Food Science and Technology. 3 (4): 233–237.
Mikore D., & Mulugeta E. (2017). Determination of proximate and mineral compositions of Moringa oleifera and Moringa stenopetala leaves cultivated in Arbaminch Zuria and Konso, Ethiopia. African Journal of Biotechnology. 16 (15): 808–818. https://doi.org/10.5897/AJB2017.15919
Udousoro I. and Ekanem P. (2013). Assessment of proximate compositions of twelve edible vegetables in Nigeria. International Journal of Modern Chemistry. 4 (2): 79-89.
Akinwunmi O. A. and Omotayo F. O. (2016). Proximate analysis and nutritive values of ten common vegetables in South-West (Yoruba Land) Nigeria. Communications in Applied Sciences. 4 (2): 79–91.
Okezie E., Ugbogu A. E., Odungide A. A., Atani C. S. (2017). Proximate, antinutritional and mineral estimation of some selected consumed green vegetables in Afaha Eket, Akwa-Ibom State, Nigeria. American Journal of Food Science and Technology. 5 (5): 182-191.
Anyasor G. N., Onajobik F. D., Osilesi O. and Adebawo O. (2014). Proximate composition, mineral content and in vitro antioxidant activity of leaf and stem of Costus afer (Ginger lily). Journal of Intercultural Ethnopharmacology. 3 (3): 128-134.
Madaki F. M., Kabiru A. Y., Bakare-Odunola M. T., Mailafiya S. C., Hamzah R. U., & Edward J. (2016). Phytochemical and proximate analyses of methanol leaf extract of neem Azadirachta indica. European Journal of Medicinal Plants. 15 (2): 1-6.
Aborisade A. B., Adetutu A., & Owoade A. O. (2017). Phytochemical and proximate analysis of some medicinal leaves. Clinical Medicine Research. 6 (6): 209-214. https://doi.org/10.11648/j.cmr.20170606.16
Akindahunsi A., & Salawu S. (2005). Phytochemical screening and nutrient-antinutrient composition of selected tropical green leafy vegetables. African Journal of Biotechnology. 4 (6): 497–501.
Soetan K. O., Olaiya C. O., & Oyewole O. E. (2010). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science. 4 (5): 200-222.
Nkwocha C. C. Njoku O. U. Ekwueme F. N. (2014). Phytochemical, Antinutrient and Amino Acid Composition of Synsepalum dulcificum Pulp. IOSR Journal of Pharmacy and Biological Sciences. 9 (2): 25–29.
Awotedu O. L., Ogunbamowo P. O., Emmanuel I. B. & Lawal I. O. (2019). Phytominerals and phytochemical studies of Azadiracthta indica, Leea guineensis and Parkia biglobosa leaves. International Annals of Science. 6 (1): 28–34.
Mwanri A. W., Mamboleo T. F., Msuya J. M., & Gowele V. F. (2018). Oxalate, phytate and nitrate content in African nightshade, spider plant and amaranths at different stages of maturity. African Journal of Food Science. 12 (11): 316–322. https://doi.org/10.5897/AJFS2018.1735.
Ibanga O. I., Okon D. E. (2009). Minerals and anti-nutrients in two varieties of African pea (Dacryodes edulis). Journal of Food Technology. 7 (4): 106-110
Fagbohun E. D., Lawal O. U. and Ore M. E. (2012). The proximate, mineral and phytochemical analysis of the leaves of Ocimum gratissimum, Melanthera scandens and Leea guineensis. and their medicinal value. International Journal of Applied Biology and Pharmaceutical technology. 3 (1): 15-22
Baiyeri P. (2000). Effects of Nitrogen fertilization on mineral concentration in plaintain (Musa sp) fruit peel and pulp at unripe and ripe stages. Plant Product Research Journal. 5: 38-43.
Abidemi T. A., Adebayo O. J., Idowu O. and Agbotoba M. O. (2009). Nutrient content and anti-nutritional factors in shea butter (Butryospermum parkii) leaves. African Journal of Biotechnology. 8 (21): 5888- 5890.
Igwe, C. U., Onyeze G. O. C., Onwuliri V. A., Osuagwu C. G. and Ojiako A. O. (2010). Evaluation of chemical composition of leaf of Spodias mombin Lin. from Nigeria. Journal of Basic and Applied Science. 4 (5): 706-710
Colla G., Kim H., Kyriacou M. C. & Rouphael Y. (2018). Nitrate in fruits and vegetables. Scientia Horticulturae. 237 (5): 221–238. https://doi.org/10.1016/j.scienta.2018.04.016
Chukwuebuka E., Chinenye J. I. (2015) Biological functions and anti-nutritional effects of phytochemicals in living system. Journal of Pharmacy and Biological Sciences. 10 (2): 10-19.
Sofowora A. (1993). Medicinal plants and traditional medicine in Africa. Spectrum books Ltd. Ibadan, Nigerian. p. 289.
Sango C., Marufu L. & Zimudzi C. (2016). Phytochemical, anti-nutrients and toxicity evaluation of Cleome gynandra and Solanum nigrum: common indigenous vegetables in Zimbabwe. British Biotechnology Journal, 13 (3): 1–11.
Edem C. A. & Dosunmu M. I. (2011). Chemical evaluation of proximate composition, ascorbic acid and anti-nutrients content of african star apple (Chrysophyllum afrcanum) fruit. Int J Res Rev Appl Sci. 9 (1): 146–149.
Bello M. O., Falade O. S., Adewusi S. R. A., Olawore N. O. (2008). Studies on the chemical compositions and anti nutrients of some lesser known Nigeria fruits. African Journal of Biotechnology. 7 (21): 3972–3979.
Afolayan A. J. and Mbaebie B. O. (2012). Ethnobotanical study of medicinal plants used as anti-obesity remedies in Nkonkobe municipality of South Africa. Pharmacognosy Journal. 2 (11): 368-373.
Miller A. L. (1996). Antioxidant flavonoids: structure, function and clinical usage. Alt Med Rev. 1: 103-111.
Silva E. and Soares-da-Silva P. (2012). New Insights into the Regulation of Na þ, K þ -ATPase by Ouabain (Vol. 294). Elsevier. Pp. 99-132. https://doi.org/10.1016/B978-0-12-394305-7.00002-1.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
Copyright © 2013-, Open Science Publishers - All Rights Reserved