[1]
Abd Elaziz Sulieman Ahmed Ishag, Department of Crop Protection, University of Khartoum, Khartoum North, Sudan.
[2]
Azhari Omer Abdelbagi, Department of Crop Protection, University of Khartoum, Khartoum North, Sudan.
[3]
Ahmed Mohammed Ali Hammad, Department of Crop Protection, University of Khartoum, Khartoum North, Sudan.
[4]
Abdullatief Mohammed Abdurruhman, Department of Crop Protection, University of Khartoum, Khartoum North, Sudan; Department of Plant Protection, University of Cukurova, Adana, Turkey.
[5]
Mohammed Osman Mohammed Sir El Khatim, Department of Crop Protection, Omdurman Islamic University, Omdurman, Sudan.
The fumigant action of aqueous: ethyl acetate extract (95:5 v/v) from the Chinese cultivar was investigated against the adult stage of the cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Garlic extracts were prepared by 24 hrs soaking of garlic powder in water: ethyl acetate solution (95:5% v/v). The tests were done under concentrations of 0.1%, 1%, 5% and 10%. The bioassay was done in jute sacs placed in glass chambers with sliding doors. The result indicated that the water: ethyl acetate extract was as equally effective as steam distilled or readymade extracts. The median lethal doses (LD50s) for the extracts after 6, 12, 24, 48 and 72 hours were 0.59, 1.38, 0.44, 0.38 and 0.12%, respectively. While the respective LD90s values were 35, 17.79, 7.12, 6.50 and 1.92%. On the other hand, the median lethal times (LT50) values at concentrations 10, 5, 1 and 0.1% were 12.27, 13.9, 34 and 68 hours following the similar order, whereas the respective LT90s values were 6.926, 22.54, 53.05, and 52.68 hours. Mortality was exposure period and concentration dependent. The responses of test insects were found to be homogenous as indicated by the steep slope of probit lines. Based on the current results 90% mortality can be achieved at a concentration of 5% within 24 hrs exposure in jute sacs. No significant recoveries observed for 4 days following exposure and few non-significant cases of malformation were observed.
[1]
Parh I. A. (1983) Species of Empoasca associated with cowpea, Vigna unguiculata (L.), Walp, in Ibadan, and three ecological zones in south-western Nigeria (Homoptera: Cicadellidae). Rev. Zool. Afr. 97: 202-210.
[2]
Singh S. R., van Edmen H. F., Tylor T. A. (1978) Pests of grain legumes: Ecology and Control. London/ New York: Academic. pp. 454.
[3]
Okigbo B. N. (1978) Grain legumes in the agriculture of the tropics. Springer Netherlands, pp. 1-11.
[4]
Anon (1993) Agricultural situation and outlook, Ministry of agric. Animal and natural resources (MOAANR). Vol. IIX, NO. 1. 23-26.
[5]
FAO (977) Analysis survey of post harvest crop losses in developing countries, FAO, Rome. pp. 209.
[6]
Ibrahim R. E. (2001) Study of some aspect of sorghum grain storage in North Kordofan. Thesis, Omdurman Islamic University.
[7]
Akinfenwa S. (1975) Bioecological study of Maruca testulalis (Geyer) in Zaria area of nourth Nigeria. Univesity of Ahmadu Bello. Zaria, Nigeria.
[8]
Pereira J. (1983) The effectiveness of six vegetable oils as protectants of cowpea and bambara groundnuts against infestation by Callosobruchus maculatus (F) (Coleoptera: Bruchidae). J. Stored Prod. Res. 19 (2): 57-62.
[9]
Sir El Khatim O. M., Abdelbagi A. O., Ishag A. S. A., Hammad A. M. A. (2018). Efficacy of Hargel (Solanostemma argel (Del) hayne) shoots extract for the control of the cowpea beetle (Callosobruchus maculatus) (Coleoptera: Bruchidae). Inter. J. Life Sci. Res. 6 (3), 488-498.
[10]
Cruz C., Cardona E. (1981) Control of dry seed weevils with cooking oil. J. Agric. Univ. Puerto Rico 65: 295-98.
[11]
Ivbijaro M. F. (1983) Preservation of cowpea, Vigna unguiculata (L.) Walp. With the neem seed, Azadiracta indica A. Juss. Prot. Ecol. 5: 177-82.
[12]
Sir El Khatim O. M., Abdelbagi A. O. (2015) Efficacy of Hargel (Solanostemma argel (Del) hayne) Shoots Extract Against the Broad Bean Beetle (Bruchidius incarnatus). Agric. Biol. Sci. J. 1 (2): 52-61.
[13]
Tylor T. C. (1975) Effect of orange and grape fruit peels of Callosobruchus maculatus infestation of cowpea. Ghana J. Agric. Sci. 8: 169-72.
[14]
Abdalla M. I., Abdelbagi A. O., Hammad A. M. A., Laing M. D. (2017) Use of volatile oils of garlic to control the cowpea weevil Callosobruchus maculatus (Bruchidae: Coleoptera), South African Journal of Plant and Soil, DOI: 10.1080/02571862.2016.1225232.
[15]
Kodera Y., Suzuki A., Imada O., Kasuga I., Kanezawa A. Taru N., Fujikawa M., Nagae S., Masamoto K., Maeshing K., Ono K. (2002) Physical, chemical, and biological properties of s-allylcysteine an amino acid derived from garlic. J. Agric. Food Chem. 50: 622-632.
[16]
Okada Y., Tanaka K., Fujita I., Sato E., Okajima H. (2005) Antioxidant activity of thiosulfinates derived from garlic. Redox Rep. 10: 96-102.
[17]
Chung L. Y. (2006). The antioxidant properties of garlic compounds: allylcysteine, alliin, allicin, and allyl disulfide. J. Med. Food 9: 205 -213.
[18]
Chowdhury R., Dutta A., Chaudhuri S. R., Sharma N., Giri A. K., Chaudhuri K. (2008) In vitro and in vivo reduction of sodium arsenite induced toxicity by aqueous garlic extract. Food Chem. Toxicol. 46: 740-751.
[19]
Stoll A. and Seebeck E. (1951) Chemical investigations on allicin, the specific principle of garlic, In: Advances Enzymology, Vol. II, Nord, F. F., (Ed.), interscience, New York, pp. 377.
[20]
Farva D., Goji I. A., Joseph P. K., and Augusti K. T. (1986) Effect of garlic oil on streptozotocin-diabetic rats maintained on normal and high fat diets. India J. Biochem. Biophys. 23 (24): 9-11.
[21]
Tempel K. I. (1962) Effects of garlic on experimental cholesterol atherosclerosis in rabbits. Med. Ernaehr. 3: 197-199.
[22]
Amonkar S. V. and Reeves E. L. (1970) Mosquitoes control with active principle of garlic (A. sativum), J. Econ. Entomol. 63: 1172-1174.
[23]
Greenstock D. D. (1970) Garlic as a pesticide. Henry Doubleday Research Association. Btaintee, England. pp. 37.
[24]
Singh I. I., Mring KK., Mhla J. C. (1996) Efficacy and persistence of plants products against lesser grain borer R. dominica (F.) in wheat grain, Annals of boil. Ludhiana 12 (1): 99-103.
[25]
Wanyee C., Huang Y., Chen S., HO-Shuit H., Chiam W. Y., Huang Y., Chen S. X. and HO S. H. (1999) Toxic and antifeedant effects of allyl disulfide on Tribolium castaneum (Coleoptera: Tenobrionidae) J. Econ. Entomol. 92 (1): 239-245.
[26]
Ahmed M. A. (1998) The efficacy of five insecticides and garlic oil against Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera) and Rhyzopertha dominica (f) (Bostrichidae: Coleoptera). Thesis, University of Khartoum.
[27]
Taha M. A. (2007) Fumigant Action of Egyptian garlic oil against two stored legumes pests; Bruchidius incarnatus and Callosobruchus maculatus, (Coleoptera: Bruchidae). Thesis, University of Khartoum. Sudan.
[28]
Ahmed M. H., Abdelbagi O. A., Ishag A. S. A., Hammad A. M. A. (2019). Effects of Garlic Oils on the Fecundity and Hatchability of Callosobruchus maculatus L. (Coleoptera: Bruchidae). Universal J. Agric. Res. 7 (1), 63-68.
[29]
Abdelbagi O. A., Eissa M. Y. E., Ishag A. S. A., Hammad A. M. A. (2018). Comparative Assessment of the Fumigant Action of Volatile Oils from Three Garlic Cultivars on Faba Bean Beetle Bruchidius incarnatus (Boh.). Afr. J. Agric. Res. 13 (47), 2691-2707.
[30]
Ahmed S. A. and Abdelbagi O. A. (2014) Evaluation of the Fumiogant action of garlic (Allium sativum) aqueous extract against the cowpea seed weevil Callosobruchus maculatus (F.). Univers. J. Agri. Res. 2 (2): 71-82.
[31]
Abdalla M. I. and Abdelbagi A. O. (2015) Garlic Volatile Oil as Promising Fumigant for the Control of the Lesser Grain borer Rhyzopertha dominica (adult). Sci. Res. J. 3 (4): 5-8.
[32]
Rup P. J. and Chopra P. K. (1984) Effect of hydroprene on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Stored Prod. Res. 20: 229-232.
[33]
Winks R. G. (1982) The toxicity of phosphine to adult of T. casaneum (Herbst), time as response factor, J. Stored Prod. Res. 18: 159-169.
[34]
Gomez K. A. and Gomez A. A. (1984) Completely randomized design. In: Statistical Procedures for Agricultural Research. 2nd ed. Wiley, New York. PP. 680.
[35]
Finney D. J. (1971) Probit analysis. 3rd ed. Cambridge University Press, London pp. 318.
[36]
Abbott W. S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
[37]
Heyde V. D., Saxena R. C., and Schmutterer H. (1984) Neem oil and neem extracts as potential insecticide for control Hemipterous rice pests. Proc. 2nd Int. Neem Conf., Rauischholzhausen, 1983. pp. 377-390.
[38]
Hermawan W., Nakajima S., Tsukuda R., Fujisaki K., and Nakasuji F. (1997) Isolation of an antifeedant compound from Andrographis paniculata (Acanthaceae) against the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 32: 551-559.
[39]
Talukder F. A., and Howse P. E. (1995) Evaluation of Aphanamixis polystachya as repellants, antifeedants, toxicants and protectants in storage against Tribolium castaneum (Herbst). J. Stored Prod. Res. 31: 55-61.
[40]
Shaaya E., Kostjukovski M., Eilberg J., and Sukprakarn C. (1997) Plant oils as fumigants and contact insecticides for the control of stored-product insects. J. Stored Prod. Res. 33 (1): 7–15.
[41]
Abdalla M. I., Abdelbagi A. O. (2015) Garlic Alium sativium (L.) Volatile Oils as Fumigant for the Control of the Red floor beetle Tribolium castaneum (adult). Indian J. Sci. Res. 3 (4): 57-64.
[42]
Sir El Khatim O. M., Abdelbagi A. O., Ishag A. S. A., Hammad A. M. A. (2018) Efficacy of Hargel (Solanostemma argel (Del) hayne) shoots extract for the control of the cowpea beetle (Callosobruchus maculatus) (Coleoptera: Bruchidae). Inter. J. Life Sci. Res. 6 (3): 488-498.