Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Atomic-absorption Spectroscopy Methods for Analysis of Components from Contaminants and Biomedical Applications
Current Issue
Volume 7, 2019
Issue 1 (February)
Pages: 16-25   |   Vol. 7, No. 1, February 2019   |   Follow on         
Paper in PDF Downloads: 142   Since Apr. 9, 2019 Views: 1300   Since Apr. 9, 2019
Authors
[1]
Esther Pérez-Torrero, División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, México.
[2]
Juan Pedro Luna-Arias, Departamento de Biologia Celular, Centro de Investigación y Estudios Avanzados Instituto, Politecnico Nacional, Ciudad de México, Mexico.
[3]
María Lucero Gómez-Herrera, División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, México.
Abstract
Atomic absorption technique was projected in 1955 by Allan Walsh, he was the pioneer for the initiation the use of the atomic absorption spectra for chemical analysis, considered one of the best techniques among the analytical methods, extensively applied in the quantitative studies of metals, human fluids such as blood serum, industrial and petroleum products, motor oils, toxic and pollution elements from several samples, considered excellent for their high precision. In the current review we include a relevant information about the applications and utility of the atomic absorption spectroscopy (AAS) technique, in order to offer the wide possibilities available for select the method, mainly for their precision when quantified elements for a great goals, basic, environmental contaminant, toxically, certificate references samples, foods safety. The AAS technique bases their principles by using as light source a hollow cathode lamp which emits light of a wide wavelength for cover the wide of elements content in a solution, which are heated and quantified using the absorption value according its concentration. Principle of the AAS method is supported because the atomized elements absorb energy of a specific wavelength for each element. Great number of gaseous metal atoms will normally remain in the ground state, in these conditions. These have the capacity of absorbing radiant energy of their own specific resonance of wavelength, which passed through a flame containing atoms, and part of the light be absorbed. The absorbed extent will be proportional to the number of ground state atoms in the flame, method is extremely confinable because their precision desirable for chemical analyses, taking the periodical table of elements as reference, being the main preferable for the researches for multiple purposes but applications of the technique can be summarized in several topic biological analysis, environmental and marine analysis indicators, and geological analysis.
Keywords
Biological, Biomedical, Reference Samples, Measure Quality
Reference
[1]
Hannaford, P. (2013). Alan Walsh and atomic absorption story: Celebrating 60 years. Australian Physics, 50: 188-194.
[2]
Grove, E. L. (2013). Applied atomic spectroscopy. Modern Analytical Chemistry. Springer Science and Business Media LLC.
[3]
Gary, D. C. (1972). Atomic absorption spectroscopy for the determination of elements in medical biological samples. In: Inorganic and Analytical Chemistry, 26: 77-112.
[4]
Welz, B., Vale M. G. R., Pereira E. R., Castilho, I. N. B. Dessuy M. BV. (2014). Continuum Source Atomic Absorption Spectrometry: Past, Present and Future Aspects – A Critical Review. Journal of the Brazilian Chemical Society, 25: 799-821.
[5]
Schrenk, W. G. (1975). Analytical atomic spectroscopy. New York, Plenium Press.
[6]
. The U. S. Department of Energy’s Ten-Year-Plans for the Office of Science National Laboratories FY (2018). Consolidated Report Prepared by U. S. Department of Energy Office of Science.
[7]
Eslami, H., Solati-Hashjin, M., Tahriri, M. (2009). The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Materials Science and Engineering C, 29: 1387-1398.
[8]
Arroyo, J., Marcó, L., Malavé, R., Anzola, E., Gómez, L., Domínguez, J. R. F., Alvarado J. (2002). Determination of manganesum and potassium in cement and gypsum samples by slurry-fiaas and alkaline fussion as analytical alternatives to the conventional procedure of leaching. Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 25: 42-48.
[9]
Bugallo, R. A., Segade, S. R., and Gómez, E. F. (2007). Comparison of slurry sampling and microwave-assisted digestion for calcium, magnesium, iron, copper and zinc determination in fish tissue samples by flame atomic absorption spectrometry. Talanta 72: 60-65.
[10]
Marcó, L. M., Hernández-Caraballo, E. A. (2004). Direct analysis of biological samples by total reflection x-ray fluorescence. Spectrochimica Acta Part B, 59: 1077-1090.
[11]
Januzzi, G., Krug, F. J., Arruda, M. (1997). Application of the slurry technique to the determination of selenium in fish samples by electrothermal atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry, 12: 375-378.
[12]
da Silva E G. P., Santos, A. C. N., Costa A. C. S, Fortunato D. M. N., José, N. M., Korna, M G. A., dos Santos, W. N. L., Ferreira, S. L. C. (2006). Determination of manganese and zinc in powdered chocolate samples by slurry sampling using sequential multi-element flame atomic absorption spectrometry. Microchemical Journal, 82: 159-162.
[13]
Mokgalaka N. S., Wondimu T., McCrindle, R. (2008). Slurry nebulization icp-oes for the determination of Cu, Fe, Mg, Mn and Zn in bovine liver. Bulletin of the Chemical Society of Ethiopia, 22: 313-321.
[14]
Andrade Korn, M. G., Santos da Boa Morte, E., Muniz Batista dos Santos, D. C., Teixeira Castro, J., Pereira Barbosa, J. T., Teixeira, A. P., Fernandes A. P., Welz, B., Carvalho dos Santos, W. P., Guimaraes Nunes dos Santos E. B., Korn, M. (2008). Sample preparation for the determination of metals in food samples using spectroanalytical methods-a review. Applied Spectroscopy Reviews, 43: 67-92.
[15]
Mohamed, N., Fry, R. (1981). Slurry atomization direct spectrochemical analysis of animal tissue. Analytical Chemistry, 53: 450-455.
[16]
Fry, RC., Denton, M. B. (1977). High solids sample introduction for flame atomic absorption analysis. Analytical Chemistry 49, 1413-1417. Royal Geographic Society, www.rgs.org
[17]
Quansah, R., Armah, F. A., Essumang, D. K., Luginaah, I., Clarke, E., Marfoh, K., Cobbins, S. J., Nketiah-Amponsah, E., Bazanya Namujju, P., Obiri, S., Dzodzomenyo, M. (2015). Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environmental Health Perspectives, 123: 412-421.
[18]
Brower, H. (2005). Screening technique for lead and cadmium in toys and other materials using atomic absorption spectroscopy. Journal of Chemical Education, 82: 611-612.
[19]
Environmental Protection Agency (EPA). (1995). A guide to the biosolids risk assessments for the EPA part 503 rule. Washington: Office of Water. USA.
[20]
Donais, M. K., Whissel, G. Dumas, A., Golden, K. (2009). Analyzing lead content in ancient bronze coins by flame atomic absorption spectroscopy: An archaeometry laboratory with nanoscience majors. Journal of Chemical Education, 86: 343-346.
[21]
Satarug, S., Baker, J. R., Urbenjapol, S., Haswell-Elkins, M. R., Reilly, P. E. B., Williams, D. J. A. (2003). Global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 137: 65-83.
[22]
Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S., Panasiuk, D. (2006). Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Science of the Total Environment, 370: 147-156.
[23]
Singh, S. K., Chaudhary, A., Rai, D. K., Rai, S. B. (2009). Preparation and characterization of a mercury based indian traditional preparation and characterization of a mercury based indian traditional drug-ras-sindoor. Indian Journal of Traditional Knowledge, 8: 346-351.
[24]
Zaidi, M. I., Asrar, A., Mansoor, A., Farooqui, M. A. (2005). The heavy metal concentrations along road side trees of Quetta and its effects on public health. Journal of Applied Sciences 5: 708-11.
[25]
D’Mello, J. P. F. (2003). Food safety: Contaminants and toxins. Wallingford, Oxon, UK, Cambridge, MA: CABI Publishing. 480 pp.
[26]
Caggiano, R., Macchiato, M. F., Ragosta, M. (2004). Heavy metals in ryegrass species versus metal concentrations in atmospheric particulates in an industrial area of southern Italy. Environmental Monitoring and Assessment, 102: 67-84.
[27]
Ram, S., Lokhande, P. U., Pimple S. D. S. (2011). Toxicity study of heavy metals pollutants in waste water effluent samples collected from Taloja Industrial State of Mumbai, India. Resources and Environment, 1: 13-19.
[28]
Singare P. U., Dhabarde S. S. (2014). Pollution due to Textile Industries along Dombivali Industrial Belt of Mumbai, India World. International Letters of Chemistry, Physics and Astronomy, 3: 24-31.
[29]
Dragan, R., Milicevic D. R., Jovanovic M., Juric V. B., Petrovic Z. I., Vukovic D. Ž. (2010). Assessment of toxic elements’ content in swine kidneys: Pathomorphological analysis. Archives of Oncology 18: 17-22.
[30]
Isaev, L. K. (1997). The effects on humans from hazardous and harmful ecological factors: metrological aspects, in 2 volumes, PAIMS, Moscow.
[31]
Rothery, E. (1988). Analytical methods for graphite tube atomizers, Varian Australia Pty Ltd., Publ. No. 85-100848-00.
[32]
Lind, M. L., Boman, A., Sollenberg, J., Johnsson, S., Hagelthorn, G., Meding, B. (2005). Occupational decimal exposure to permanent hair dyes among hairdressers. Annals of Occupational Hygiene, 49: 473-480.
[33]
Alan, P. (2005). United States world health report on harmful/toxic toiletries and cancer causing chemicals. Washington DC: Jonsson Cancer Centre 1-4.
[34]
Briggs-Kamara, M. A., Warmate, A. G., Chad-Umoren, Y. E., Ibechedor, C. M. (2009). Neutron activation and flame atomic absorption elemental analyses of selected hair dyes. Facta Universitatis Series: Working and Living Environmental Protection, 6: 21-28.
[35]
Norheim, G. (1972). Postmortem alcohol in vitreous humor. Blutalkohol, 9: 187-191.
[36]
Grusz-Harday, E. (1966) Arsengehalt des menschlichen organismus bei vergifteten in klinischen und tdlichen fillen. Archives für Toxikologie, 22: 164-175.
[37]
Wyttenbach, A. Barthe, P. Martin E. P. (1967). The content of arsenic in the hair in a case of acute lethal arsenic poisoning. Journal of the Forensic Science Society, 7: 194-197.
[38]
Barrowcliff, D. (1971). The stoneleigh abbey poisoning case. The Medico-Legal Journal 39: 79-90.
[39]
Pearson, E. F., Pounds, C. A. (1971). A case involving the administration of known amounts of arsenic and its analysis in hair. Journal of the Forensic Science Society, 11: 229-234.
[40]
Heydorn, K. Environmental variation of arsenic levels in human blood determined by neutron activation analysis. Clinica Chimic Acta, 28: 349-357.
[41]
Bäumler, J., Im Obersteg, J., Shafer, l. (1968). Determination of the level of arsenic in human bodies (population of Basle). Deutsche Zeitschrift für die gesamte gerichtliche Medizin, 64: 56-61.
[42]
Fornara, A. (2010). Multifunctional nanomaterials for diagnostic and therapeutic applications. Stockholm. Division of Functional Materials School of Information and Communication Technology Royal Institute of Technology. Doctoral Thesis.
[43]
Kattumuri, V. (2010). Gold nanoparticles for biomedical applications: synthesis, characterization, in vitro and in vivo studies. Dissertation Presented to the Faculty of the Graduate School University of Missouri-Columbia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy.
[44]
Rodríguez-Cuevas, S. and Luna-Arias, J. P. (2007). Impacto de las firmas genómicas en la decisión terapéutica del cáncer de mama. Cirugía Cirujanos, 75: 415-417.
[45]
Goyal, M. M., Kalwar, A. K., Vyas R. K., Bhati A. (2006). A study of serum zinc, selenium and copper levels in carcinoma of esophagus patients Indian Journal of Clinical Biochemistry, 21: 208-210.
[46]
Parker, R. J., Gill, I., Tarone, R., Vionnet, J. A., Grunberg, S., Muggia, F. M., Reed E. (1991). Platinum-DNA Damage in leukocyte dna of patients receiving carboplatin and cisplatin chemotherapy, measured by atomic absorption spectrometry. Carcinogenesis, 12: 1253-1258.
[47]
Abernathy, T. V., Lee, K. B., Parker, R. J., Reed, E. (1999). The Measurement of cadmium in biological materials, using graphite furnace atomic absorption spectrometry with zeeman background correction. Oncology and Reproduction 6, 155-159.
[48]
Riley, M. R., Boesewetter, D. E., Kim, A. M., Sirvent, F. P. (2003). Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Toxicology 190: 171-184.
[49]
Mark, S. D., Qiao, Y. L., Dawsey, S. M., Wu, Y. P., Katki, H., Gunter, E. W., Fraumeni, J. F. Jr., Blot, W. J., Dong, Z. W., Taylor, P. R. (2000). Prospective study of serum selenium levels and incident esophageal and gastric cancers. Journal of the National Cancer Institute, 92: 1753-1763.
[50]
Kim, S. Y., Kim, J. W., Ko, Y. S., Koo, J. E., Chung, H. Y. Lee-Kim, Y. C. (2003). Changes in lipid peroxidation and antioxidant trace elements in serum of women with cervical intraepithelial neoplasia and invasive cancer. Nutrition and Cancer, 47: 126-130.
[51]
Milde, D., Novák, O., Stu ka, V., Vyslou il, Machá ek, J. (2001). Serum levels of selenium, maganese, copper and iron in colorectal cancer patients. Biological Trace Element Research, 79: 107-114.
[52]
Miyamoto, H., Araya, Y., Ito, M., Isobe, H., Dosaka, H., Shimizu, T., Kishi, F., Yamamoto, I., Honma, H. and Kawakami, Y. (1987). Serum selenium and vitamin E concentrations in families of lung cancer patients. Cancer, 60: 1159-1162.
[53]
Sullivan, J. F., Blotcky, A. J., Jetton, M. M., Hahn, H. K., Burch, R. E. (1979). Serum levels of selenium, calcium, copper, magnesium, magnise and zinc in various human diseases. The Journal of Nutrition, 109: 1432-1437.
[54]
Parra, L-M. M. (2012). Analysis of high solid content in biological samples by flame atomic absorption spectrometry. Atomic Absorption Spectroscopy, Muhammad Akhyar Farrukh (Ed.), InTech.
[55]
Dams, R. (1983). Reference materials for trace analysis. International Union of Pure and Applied Chemistry (IUPAC), 55: 1957-1968.
[56]
Nordberg, G., Sandstrӧm, B. Becking, G., Goyer, R. A. (2001). Essentiality and toxicity of trace elements: principles and methods for assessment of risk from human exposure to essential trace elements. The Journal of Trace Elements in Experimental Medicine, 14: 261-273.
[57]
Bannon, D. I., Murashchik, C., Zapf, C. R., Farfel, M. R., Chisolm, J. J. (1994). Graphite furnace atomic absorption spectroscopic measurement of blood lead in matrix-matched standards. Clinical Chemistry, 40: 1730-1734.
[58]
Adejumo, O. O., Alarapon, I. O., Adejumo, O. E., Akinloye, M. K. (2018). Application of atomic absorption spectroscopy in of the elemental composition of Chanca piedra (stone breaker leaf) growing in Iwo, the determination South West Nigeria. Journal of Experimental Food Chemistry 4: 136.
[59]
Hashim, A., Vaswani, V., Pramod, K. L., Rasheed, S. (2016). Homicidal poisons-past, present and future. Indian Journal of Forensic Medicine & Toxicology, 10: 245-249.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved