Ti-Substituted Hydroxylapatite Precipitated in the Presence of Titanium Sulphate: A Novel Photocatalyst?
Hydroxylapatite (HAp) doped with about 10 mol.% Ti (TiHAp) has recently been reported to be successfully synthesized by the co-precipitation method coupled to heat treatment and attracted attention as a novel photocatalyst. The formation of TiHAp was re-investigated using the same method and materials. The synthesis products were analysed by Raman spectroscopy and X-ray diffraction. It is demonstrated that the product obtained by the co-precipitation method is a composite material that consists of nano-crystalline anatase and subordinately perovskite (CaTiO3) along with nano-crystalline, slightly Ca-deficient HAp. It follows that the observed photocatalytical properties of TiHAp obtained by this synthesis method are related to the formation of such a composite material rather than to Ti-doped HAp. The experimentally observed photocatalytical properties of TiHAp samples must thus be related to other product properties (e.g., Ti phase composition, crystallite size, and/or surface state) that are controlled by both the presence of Ti in solution and the synthesis method.
Hydroxylapatite, TiHAp, Ca-deficient HAp, Titanium Sulphate, Raman Spectroscopy, X-ray Diffraction
[1]
N. Rameshbabu, T. S. Sampath Kumar, T. G. Prabhakar, V. S. Sastry, K. V. Murty, K. Prasad Rao, J. Biomed. Mater. Res. Part A, 2007, 80, 581−591.
[2]
K. A. Gross, R. Jackson, J. D. Cashion, L. M. Rodriguez-Lorenzo, Eur. Cell. Mater., 2002, 3, 114−117.
[3]
D. Guo, K. Xu, X. Zhao, Y. Han, Biomater., 2005, 26, 4073−4083.
[4]
Z. Feng, Y. Liao, M. Ye, J. Mater. Sci.: Mater. Med., 2005, 16, 417−421.
[5]
S. Ogo, A. Onda, K. Yanagisawa, Appl. Catal. A: Gen., 2008, 348, 129−134.
[6]
A. Shpak, V. L. Karbovskii, N. A. Kurgan, E. I. Getman, A. I. Senkevich, V. I. Marchenko, Functional Mater., 2005, 12, 695−699.
[7]
V. Karbovskii, S. Smolyak, A. Shpak, Z. Y, K. V, Functional Mater., 2010, 17, 151−157.
[8]
K. Nakata, T. Kubo, C. Numako, T. Onoki, A. Nakahira, Mater. Trans., 2009, 50, 1046−1049.
[9]
J. Vandiver, D. Dean, N. Patel, C. Botelho, S. Best, J. D. Santos, M. A. Lopes, W. Bonfield, C. Ortiz, J. Biomed. Mater. Res. A, 2006, 78, 352−363.
[10]
A. Alshemary, Y. F. Goh, M. Akram, I. R. Razali, M. R. Abdul Kadir, R. Hussain, Mater. Res. Bull., 2013, 48, 2106−2110.
[11]
I. Rehman, W. Bonfield, J. Mater. Sci.: Mater. Med., 1997, 8, 1−4.
[12]
J. M. Hughes, J. F. Rakovan, Elements, 2015, 11, 165−170.
[13]
H.-J. Ensikat, T. Geisler, M. Weigend, Sci. Rep., 2016, 6, 260−273.
[14]
V. C. Ghantani, S. T. Lomate, M. K. Dongare, S. B. Umbarkar, Green Chem., 2013, 15, 1211−1217.
[15]
Z. Dinglin, Z. Huawen, Z. Xianying, L. Yimin, C. Hua, L. Xianjun, Prog. Chem., 2011, 23, 687−694.
[16]
Y. Matsumura, H. Kanai, J. B. Moffat, J. Mol. Catal. A: Chem., 1997, 115, L229−L232.
[17]
J. H. Shariffuddin, M. I. Jones, D. A. Patterson, Chem. Eng. Res. Des., 2013, 91, 1693−1704.
[18]
H. Nishikawa, Mater. Lett., 2004, 58, 14−16.
[19]
H. Nishikawa, J. Mol. Catal. A: Chem., 2003, 206, 331−338.
[20]
H. Nishikawaa, O. K., J. Mol. Catal. A: Chem., 2002, 179, 193−200.
[21]
H. Tanaka, E. Tsuda, H. Nishikawa, M. Fuji, Adv. Powder Technol., 2012, 23, 115−119.
[22]
A. Mitsionis, T. Vaimakis, C. Trapalis, N. Todorova, D. Bahnemann, R. Dillert, Appl. Catal. B: Environ., 2011, 106, 398−404.
[23]
K. Kandori, M. Oketani, Y. Sakita, M. Wakamura, J. Mol. Catal. A: Chem., 2012, 360, 54−60.
[24]
M. Wakamura, H. Tanaka, Y. Naganuma, N. Yoshida, T. Watanabe, Adv. Powder Technol., 2011, 22, 498−503.
[25]
M. Tsukada, M. Wakamura, N. Yoshida, T. Watanabe, J. Mol. r Catal. A: Chem., 2011, 338, 18−23.
[26]
K. Kandori, T. Kuroda, M. Wakamura, Colloids and surfaces. B, Biointerfaces, 2011, 87, 472−479.
[27]
M. Wakamura, K. Hashimoto, T. Watanabe, Langmuir, 2003, 19, 3428−3431.
[28]
M. Wakamura, Fujitsu Sci. Tech. J., 2005, 41, 181−190.
[29]
Q. Li, X. Feng, X. Zhang, H. Song, J. Zhang, J. Shang, W. Sun, T. Zhu, M. Wakamura, M. Tsukada, Y. Lu, Chinese J. Catal.,, 2014, 35, 90-98.
[30]
J. Huang, S. M. Best, W. Bonfield, T. Buckland, Acta Biomater., 2010, 6, 241−249.
[31]
J. Huang, X. Li, G. P. Koller, L. Di Silvio, M. A. Vargas-Reus, R. P. Allaker, J. Mater. Sci.: Mater. Med., 2011, 22, 491−496.
[32]
M. Nishikawa, W. Yang, Y. Nosaka, J. Mol. Catal. A: Chem., 2013, 378, 314−318.
[33]
H. Anmin, L. Ming, C. Chengkang, M. Dali, J. Molecul. Catal. A: Chem., 2007, 267, 79–85.
[34]
F. Asjadi, E. Salahi, I. Mobasherpour, J. Disp. Sci. Technol., 2016, 37, 14−22.
[35]
S. Sugiyama, S. Tanimoto, K. Fukuda, K. Kawashiro, T. Tomida, H. Hayashi, Coll. Surf. A: Physicochem. Eng. Asp., 2005, 252, 187−192.
[36]
T. Geisler, B. E. Burakov, V. Zirlin, L. Nikolaeva, P. Pöml., Eur. J. Mineral., 2005, 17, 883–894.
[37]
T. Geisler, K. Popa, R. J. M. Konings, Front. Earth Sci., 2016, 4, 64.
[38]
E. B. Saloman, C. J. Sansonetti, J. Phys. Chem. Ref. Data, 2004, 33, 1113−1158.
[39]
K. Tanabe, J. Hiraishi, Spectrochim. Acta Part A: Mol. Spec., 1980, 36, 341−344.
[40]
M. Wojdyr, J. App. Cryst., 2010, 43, 1126−1128.
[41]
T. J. B. Holland, S. A. T. Redfern, Min. Mag., 1997, 61, 65−77.
[42]
P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in: Kolloidchemie. Ein Lehrbuch, Springer Berlin Heidelberg, Berlin, Heidelberg, 1912, 387−409.
[43]
G. K. Williamson, W. H. Hall, Acta Metall., 1953, 1, 22−31.
[44]
H. Tsuda, J. Arends, J. Dent. Res., 1994, 73, 1703−1710.
[45]
K. C. Blakeslee, R. A. Condrate, J. Amer. Cer. Soc., 1971, 54, 559−563.
[46]
D. C. O'Shea, M. L. Bartlett, R. A. Young, Arch. Oral Biol., 1974, 19, 995−1006.
[47]
O. Toshiaki, I. Fujio, F. Yoshinori, J. Raman Spec., 1978, 7, 321−324.
[48]
W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, Q. Chen, J. Phys. D: App. Phys., 2000, 33, 912−916.
[49]
S. K. Gupta, Rucha Desai, P. K. Jha, S. P. Sahoo, D. Kirin, J. Raman Spectrosc., 2009, 41, 350-355.
[50]
M. L. Moreira, E. C. Paris, G. S. do Nascimento, V. M. Longo, J. R. Sambrano, V. R. Mastelaro, M. I. B. Bernardi, J. Andrés, J. A. Varela, E. Longo, Acta Mater., 2009, 57, 5174−5185.
[51]
S. Zou, J. Huang, S. Best, W. Bonfield, J. Mater. Sci.: Mater. Med., 2005, 16, 1143−1148.
[52]
H. Richter, Z. P. Wang, L. Ley, Sol. State Comm., 1981, 39, 625−629.
[53]
S. S. Bhat, U. V. Waghmare, U. Ramamurty, Cryst. Growth. Des., 2014, 14, 3131−3141.
[54]
N. C. Blumenthal, F. Betts, A. S. Posner, Calcif. Tissue Int., 1981, 33, 111−117.
[55]
C. Rey, M. Shimizu, B. Collins, M. J. Glimcher, Calcif. Tissue Int., 1991, 49, 383−388.
[56]
B. U. Grzmil, D. Grela, B. lKic, Chem. Pap., 2008, 62, 18–25.
[57]
R. Shannon, Acta Cryst. Sec. A, 1976, 32, 751−767.
[58]
V. M. Goldschmidt, Naturwissenschaften, 1926, 14, 477−485.