Theoretical Evaluation of π–π Stacking Interactions and Proton Transfers in a Novel Hydrogen-Bonded Complex: Between 2,2'-Dipyridylamine and 2,6-Pyridinedicarboxylic Acid
[1]
Mehdi Shahraki, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
[2]
Sayyed Mostafa Habibi-Khorassani, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
[3]
Halimeh Kordi-Tamandani, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
[4]
Younes Ghalandarzehi, Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran.
In this work, we showed theoretically the aromatic system of the hydrogen-bonded complex, [(DPAH)+(dipicH)−.H2O] formed by the reaction between 2,2'-dipyridylamineand (DPA) and 2,6-pyridine dicarboxylic acid (dipicH2) established the π–π stacking interactions, which have an important role in the stabilization of crystals with distance centroid-centroid (d: Cg-Cg). The proton transfer investigated theoretically and thermodynamic parameters such as ∆H‡, ∆G‡, ∆S‡ were calculated for this process. Moreover, intramolecular hydrogen-bonding interaction has been recognized by calculating the electron density ρ(r) and Laplacian 2(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method. Also, the interaction between electron acceptor (σ*) of OH with the lone pair of the nitrogen atom as an electron donor was evaluated using Natural Bond Orbital (NBO) analysis.
Hydrogen-Bonded Complex, Stacking Interactions, Proton Transfer, AIM, NBO
[1]
H. Aghabozorg, M. Ghadermazi, J. Attar Gharamaleki, Acta Cryst. E62 (2006) o3174.
[2]
M. Ghadermazi, F. Manteghi, S. Mehdizadeh, N. Kakaei, A. Shokrollahi, Z. Malekhosseini M. Shamsipur, J. Iran. Chem. Soc. 8 (2011) 919
[3]
H. Aghabozorg, F. Manteghi, S. Sheshmani, J. Iran. Chem. Soc. 5 (2008) 184.
[4]
M. Chatterjee, M. Maji, S. Ghosh, T.C.W. Mak, J. Chem. Soc. Dalton Trans. (1998) 3641.
[5]
L.C. Nathan, T.D. Mai, J. Chem. Cryst. 30 (2000) 509.
[6]
L.C. Nathan, Trends Inorg. Chem. 3 (1993) 415.
[7]
L. Yang, D.C. Crans, S.M. Miller, A. la Cour, O.P. Anderson, P.M. Kaszynski, M.E. Godzala III, L.D. Austin, G.R. Willsky, Inorg.Chem. 41 (2002) 4859.
[8]
T. Douki, B. Setlow, P. Setlow, Photochem. Photobiol. Sci. 4 (2005) 591.
[9]
T.A. Slieman, W.L. Nicholson, Appl. Environ. Microbiol. 67 (2001) 1274.
[10]
J. Errington, Microbiol. Rev. 57 (1993) 1.
[11]
B. Setlow, P. Setlow, Appl. Environ. Microbiol. 59 (1993) 640.
[12]
F.W. Janssen, A.J. Lund, L.E. Anderson, Science 127 (1958) 26.
[13]
E. Ricca, A.O. Henriques, S.M. Cutting (Eds.), Bacterial Spore Formers: Probiotics and Emerging Applications, Horizon Bioscience, 2004.
[14]
K. Murakami, Y. Tanemura, M. Yoshino, J. Nutr. Biochem. 14 (2003) 99.
[15]
L. Couper, J.E. Mckendrick, D.J. Robins, E.J.T. Chrystal, Bioorg. Med. Chem. Lett. 4 (1994) 2267.
[16]
D.L. Griggs, P. Hedden, K.E. Templesmith, W. Rademacher, Phytochemistry 30 (1991) 2513.
[17]
Y. Kazuhiro, Y. Noriko, F. Tadayasu, Europ. Patent. EP0603165, 1994.
[18]
G.A. Burdock, Encyclopedia of Food and Color Additives, vol. 3, CRC Press, 1996.
[19]
K. Ghasemi, A.R. Rezvani, A. Shokrollahi, F. Zarghampour, A. Moghimi, S. García-Granda, R. Mendoza-Meroño, Journal of Molecular Structure, 1089 (2015) 184 –190.
[20]
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[21]
G.A. Petersson, M.A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.
[22]
G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193.
[23]
R.G. Parr, W. Yang, Density-functional theory of atoms and molecules, 1994 (Oxford University Press).
[24]
T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, J. Comput. Chem. 4 (1983) 294.
[25]
A.E. Shchavlev, A.N. Pankratov, A.V. Shalabay, J. Phys. Chem. A 109 (2005) 4137.
[26]
W.J. Hehre, L. Radom, P.V. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, (1986) (Wiley, New York).
[27]
M. Shahraki, S.M. Habibi-Khorassani, A. Ebrahimi, M. Maghsoodlou, Y. Ghalandarzehi, Struct Chem 2012, 24, 623-635.
[28]
R.F.W. Bader, Atoms in Molecules: A Quantum Theory, 1990 (Oxford University Press, New York)
[29]
F.W. Biegler-konig, J. Schonbohm, D. Bayles, J. Comput. Chem. 22 (2001) 545.
[30]
J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211.
[31]
A.E. Reed, L.A. Curtiss, F.A. Weinhold, Chem. Rev. 88 (1988) 899.
[32]
E.D. Glendening, A.E. Reed, J.E. Carpenter, F.A. Weinhold, NBO, Version 3.1, 1995.
[33]
B.K. Paul, S. Mahanta, R.B. Singh, N. Guchhait, J. Phys. Chem. A 114 (2010) 2618.
[34]
M. Palusiak, S. Simon, M. Sola, J. Org. Chem. 71 (2006) 5241.
[35]
A.E. Shchavlev, A.N. Pankratov, A.V. Shalabay, J. Phys. Chem. A 109 (2005) 4137.
[36]
R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, New York, 1990.
[37]
W.D. Arnold, E. Oldfield, J. Am. Chem. Soc. 122 (2000) 12835.