Correlation Between HPLC Identification Technique of Rocket as Antifungal
[1]
Husain Abd Allah El-Fadaly, Agriculture Microbiology Department, Faculty of Agriculture, Damietta University, Damietta City, Egypt.
[2]
Sherif Mohamed El-Kadi, Agriculture Microbiology Department, Faculty of Agriculture, Damietta University, Damietta City, Egypt.
[3]
Mostafa Maher El-Moghazy, Animal Production Department, Faculty of Agriculture, Damietta University, Damietta City, Egypt.
[4]
Ahmed Ali Soliman, Animal Nutrition Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza City, Egypt.
[5]
Mahmoud Salama Mahmoud El-Haysha, Animal Nutrition Research Department, Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Dokki, Giza City, Egypt.
[1]
Vig, A. P.; Walia, A. (2001). Beneficial effects of Rhizopus oligo sporous fermentation on reduction of glucosinolates, fiber, and phytic acid in rapeseed (Brassica napus) meal. Bioresource Technol., 78, 309-312.
[2]
Rakariyatham, N.; Sakorn, P. (2002). Biodegradation of glucosinolates in brown mustard meal (Brassica juncea) by Aspergillus sp. NR-4201 in liquid and solid culture. Biodegradation 3: 395-409.
[3]
Talalay, P.; Fahey, J. W. (2001). Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J. Nutr., 131: 3027-33.
[4]
Bradley, P. R. (1992). British herbal medicine association. British herbal compendium, vol. 1. Rolnic. Zych, 434: 395-399.
[5]
Leung, A. Y.; Foster, S. (1996). Drugs and cosmetics, 2nd Encyclopedia of Common Natural ingredients used in food New York: john wiley & sons, Inc.
[6]
Kim, S. J.; Jin, S.; Ishii, G. (2004). Isolation and structural elucidation of 4-(B-d-lucopyranosyldisulfanyl) butyl glucosinolate from leaves of rocket salad (Eruca sativa L) and its antioxidative activity Biosci. Biotechnol. 68: 2444-2450.
[7]
Chen, S.; Andreasson, E. (2001). Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39, 743-758.
[8]
Kutz, A.; Muller, A.; Hennig, P.; Kaiser, W. M.; Piotrowski, M.; Weiler, E. W. (2002). A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J. 30, 95-106.
[9]
Grubb, C. D.; Zipp, B. J.; Muller, J. L.; Masuno, M. N.; Molinski, T. F.; Abel, S. (2004). Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant. J. 40, 893-908.
[10]
Chan, M. K. Y.; Close, R. C. (1987). Aphanomyces root rot of peas control by the use of cruciferous amendments. New Zealand Journal of Agricultural Research, 30, 225-233.
[11]
Vierheilig, H.; Ocampo, J. A. (1990). Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biology and Biochemistry, 22, 1161-1163.
[12]
Gamliel, A.; Stapleton, J. J. (1993). Characterization of antifungal volatile compounds evolved from solarized soil amended with cabbage residues. Phytopathology, 83: 899-905.
[13]
Angus, J. F. (1994). Biofumigation: isothiocyanates released from Brassica roots inhibit the growth of the take-all fungus. Plant and Soil, 162: 107-112.
[14]
Samuelsson, G.; Bohlin, L. (2009). Drugs of Natural Origin. (6th edn) Apotekarsocieteten, Sweden.
[15]
Agostini-Costa. T. S.; VRF, Bizzo, H. R.; Silveira, D.; Gimenes, M. A. (2012). Secondary Metabolites. In: Chromatography and its applications. Dhanarasu DS (ed) In Tech Brazil.
[16]
Rani, I.; Akhund, S.; Suhail, M.; Abro, H. (2010). Antimicrobial potential of seed extract of Eruca sativa. Pak J Bot, 42 (4), 2949-2953.
[17]
Abdel-Rahman, S., Haggag, A., & Elmaghraby, A. (2015). Activation of PTEN tumor suppressor gene expression by Eruca sativa seeds extract against rat mammary gland carcinogenesis induced by DMBA. Australian Journal of Basic and Applied Sciences, 9 (23), 431-6.
[18]
Matusheski, N.; Jeffery, E. H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 49: 5743-5749.
[19]
Jen, J.; Lin, T.; Huang, J.; Chung, W. (2001). Direct determination of sinigrin in mustard seed without desulfatation by reverse-phase ion-pair liquid chromatography. J. Chrom. A 912: 363-368.
[20]
Verkerk, R.; van Boekel, M. A. J. S.; Jongen, W. M. F.; Dekker, M. (2002). Predictive modeling of the glucosinolate myrosinase system during cooking of cabbage. In: Verkerk R. (Eds.) Evaluation of glucosinolate levels throughout the production chain of Brassica vegetables; towards a novel predictive modeling approach, Ph.D. Thesis, Wageningen University. pp 87110.
[21]
Tsao, G.; Yu, Q.; Potters, J.; Chiba, M. (2002). Direct and simultaneous analysis of sinigrin and allyl isothiocyanates in mustard samples by high-performance liquid chromatography. J. Agric. Food Chem. 50: 4749-4753.
[22]
Karcher, A.; Rassi, Z. E. (1999). Capillary electrophoresis of glucosinolates and their degradation products. Electrophoresis 20: 3181-3189.
[23]
Padukka, I.; Bhandari, B.; D’Arcy, B. (2000). Evaluation of various extraction methods of decomposition of encapsulated oil from β-cyclodextrin-melon oil complex powder. J. Food Comp. Anal. 13: 59-70.
[24]
Ben-Hammouda, M.; Kremer, R. J.; Minor, H. C.; Sarwar, M. (1995). A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 21: 775-786.
[25]
Pintado, J.; González, M. P.; Murado, M. A. (1997). Interactions between pretreatment and nutrient concentrations of mussel processing for citric acid production. Enzyme and Microbial Technol., 20: 544-549.
[26]
Elsherbiny, A. E.; El-Khateeb, A. Y. (2012). Effect of organic and inorganic salts on mycelial growth, sporulation and spore germination of potato postharvest pathogens. J. Plant Prot. and Pathol., Mansoura Univ., 3 (12): 1353-1364.
[27]
Plethora of polyphenols Plant Phenolics (1989). Edited by Harborne, J. B. Volume 1 in Methods in Plant Biochemistry (Dey, P. M.; Harborne, J. B. Eds).
[28]
Hättenschwiler, S.; Vitousek, P. M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol. 15 (6): 238-243.
[29]
Tahara, S.; Ingham, J. L.; Nakahara, S.; Mizutani, J.; Harborne, J. B. (1984). Fungitoxic dihydro furan isoflavones and related compounds in white lupin, Lupinus albus. Phytochem., 23: 1889-1900.
[30]
Lago, J. H.; Ramos, C. S.; Casanova, D. C.; Morandim, A. A.; Bergamo, D. C.; Cavalheiro, A. J.; Bolzani, V. S.; Furlan, M.; Guimaraes, E. F.; Young, M. C.; Kato, M. J. (2004). Benzoic acid derivatives from Piper species and their fungitoxic activity against Cladosporium cladosporioides and C. sphaerospermum. J. Nat. Prod., 67: 783-792.
[31]
Sadiq, A.; Hayat, M. Q.; Mall, S. M. (2014). Qualitative and quantitative determination of secondary metabolites and antioxidant potential of Eruca sativa. Natural Products Chemistry & Research.
[32]
El-Fadaly, H. A.; El-Kadi, S. M.; El-Moghazy, M. M.; Soliman, A. A.; El-Haysha, M. S. M. (2017a). Correlation Between Active Components of Rocket (Eruca sativa) as Cytotoxicity (Brine Shrimp Lethality Assay). American Journal of Biomedical Science and Engineering. Vol. 3, No. 2, pp. 20-24.
[33]
El-Fadaly, H. A.; El-Kadi, S. M.; El-Moghazy, M. M.; Soliman, A. A. M.; El-Haysha, M. S. (2017b). Antioxidant activity studies on extracts of Eruca sativa seed meal and oil, detoxification, the role of antioxidants in the resistant microbes. IJSRM Human J., 6 (3): 31-51.
[34]
Abu-Zinadah, O. A. (2008). Effects of watercress oil on the thermal and chemical burn injuries in rabbits. Medical Science, Vol. 15 No. 4, pp.: 3-17.
[35]
Aqil, F.; Ahmad, I. (2003). Broad-spectrum antibacterial and antifungal properties of certain traditionally used Indian medicinal plants. World J. Microbiol. Biotechnol., 19: 653-657.
[36]
Stevenson, W. R.; Loria, R..; Franc, G. D.; Weingartner, D. P. (2001). Compendium of Potato diseases, 2nd P edition. APS Press, USA.
[37]
Walker, J. C.; Stahmann, M. A. (1955). Chemical Nature of Disease Resistance in Plants. Annu. Rev. Plant Physiol. 6: 351-366.
[38]
Lee, S.; LeTourneau, D. J. (1958). Chlorogenic acid content and Verticillium wilt resistance of potatoes. Phytopathol. 48: 268-274.
[39]
Wilson, C. L.; Wisniewski, M. E. (1989). Biological Control of Postharvest Diseases of Fruits and Vegetables: An Emerging Technology. Annu. Rev. Phytopathol. 27: 425-441.
[40]
Freiesleben, S, H,; Jäger, A. K. (2014). Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms–A Review. Med Aromat Plants. 3: 154. doi: 10.4172/2167-0412.1000154.
[41]
Ashour ML, Wink M (2011). Genus Bupleurum: A review of its phytochemistry, pharmacology, and modes of action. J Pharma Pharmacol. 63: 305-321.