Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Study of Bacterial Communities in Mussel Mytilus galloprovincialis by a Combination of 16S crDNA and 16S rDNA Sequencing
Current Issue
Volume 2, 2015
Issue 2 (April)
Pages: 18-24   |   Vol. 2, No. 2, April 2015   |   Follow on         
Paper in PDF Downloads: 39   Since Aug. 28, 2015 Views: 2144   Since Aug. 28, 2015
Authors
[1]
Santina Santisi , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy; Faculty of Sciences, University of Messina, Ph.D School in “Biology and Cellular Biotechnology”, Messina, Italy.
[2]
Maria Genovese , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[3]
Martina Bonsignore , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[4]
Elena Fiumara , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[5]
Giulia Maricchiolo , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[6]
Monique Mancuso , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[7]
Lucrezia Genovese , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[8]
Laura Giuliano , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
[9]
Simone Cappello , National Council Research (CNR), Institute for Coastal Marine Environment (IAMC) of Messina, Messina, Italy.
Abstract
In this study has been analyzed the genetic potential (rDNA) versus expression (crDNA) of microbial populations associated to gills of living mussel Mytilus galloprovincialis (Bivalvia: Mytilidae) in natural environment. Data obtained (16S rDNA/crDNA clones libraries) showed as sequences mainly related to Bacteroides/Chlorobi, Firmicutes and Gamma-Proteobacteria groups are specific in live mussels. It is presumed that further studies of microbial population structure with culture-independent methods will demonstrate the active interactions (symbiosis) between filter-feeding organisms and gill-associated bacteria.
Keywords
Mytilus galloprovincialis, Microbial Community, 16S rDNA, 16S crDNA, Symbiont
Reference
[1]
Cole JJ, Findlay S, Pace ML (1998) Bacterial production in fresh and saltwater ecosystems: A cross system overview. Mar Ecol. Prog Series 43: 1–10.
[2]
Silverman H, Lynn JW, Achebergee CR, Dietz TH (1998) Gill Structure in Zebra Mussels: Bacterial-Sized Particle Filtration. Amer Zool 36:373-384.
[3]
Cappello S, Caruso G, Zampino D, Monticelli LS, Maimone G, Denaro R et al. (2007) Microbial community dynamics during assays of a harbour oil spill bioremediation: a microscale simulation study. J App Microb 102(1): 184-194.
[4]
Cavallo RA, Acquaviva MI, Stabili L (2008) Culturable heterotrophic bacteria in seawater and Mytilus galloprovincialis from a Mediterranean area (northern Ionian Sea – Italy), Environ Monit Assess 149(1): 465–475.
[5]
Yakimov MM, Cappello S, Cridafi E, Tursi A, Savini A, Corselli C et al. (2006) Phylogenetic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep-Sea Res I 53: 62–75.
[6]
Cappello S, Russo D, Santisi S, Calogero R, Gertler C, Crisafi F, De Domenico M, Yakimov MM (2012) Presence of hydrocarbon-degrading bacteria in the gills of mussel Mytilus galloprovincialis in a contaminated environment: a mesoscale simulation study. Chemistry & Ecology 28(3): 239-252.
[7]
Wilkinson CR (1992). Symbiotic interaction between marine sponges and algae. In: Reisser, W. (Ed.), Algae and symbioses. Biopress, Bristol, England, pp. 112–151.
[8]
Vacelet J, Boury-Esnault N, Fiale-Medion A, Fischer CR (1995) A methanotrophic carnivourous sponge. Nature 377, 269.
[9]
Ritchie KB, Smith GW (2004) Microbial communities of coral surface mucopolysaccharide layers. In: Rosenberg, E., Loya, Y. (Eds.), Coral Health and Disease. Springer Verlag, Berlin/Heidelberg 259–263.
[10]
Bewley CA, Holland ND, Faulkner DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716–722.
[11]
Schmidt EW, Obraztova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel Delta-Proteobacterium Candidatus Entotheonella palauensis. Marine Biology 236:969–977.
[12]
Unson MD, Holland D, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Marine Biology 119:1–11.
[13]
Felske A, Akkermans ADL, De Vos WM (1998) Quantification of 16S crDNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints. Appl Environ Microbiol. 64:4581–4587.
[14]
Zan J, Heindl JE, Liu Y, Fuqua C, Hill RT (2013). The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11. PLoS ONE 8:e66346.10.1371/journal.pone.0066346.
[15]
Cappello S, Santisi S, Calogero R, Hassanshahian M, Yakimov MM (2012). Characterisation of oil-degrading bacteria isolated from bilge water. Water, Air & Soil Pollution. 223(6): 3219-3226.
[16]
Wagner-Döbler I, Biebl H (2006) Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 60:255–280.
[17]
La Cono V, La Spada G, Arcadi E, Placenti F, Smedile F, Ruggeri G et al. (2013) Partaking of Archaea to biogeochemical cycling in oxygen-deficient zones of meromictic saline Lake Faro (Messina, Italy). Environ Microbiol 15(6):1717-1733.
[18]
Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222.
[19]
Smith TG, Hoover TR (2009) Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol 67:257–295.
[20]
Hau HH & Gralnick JA (2007) Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61: 237–258.
[21]
Amiri-Jami M, Wang H, Kakuda Y, Griffiths MW (2006) Enhancement of polyunsaturated fatty acid production by Tn5 transposon in Shewanella baltica. Biotechnol. Lett. 28:1187-92.
[22]
Nichols DS (2003) Prokaryotes and the input of polyunsaturated fatty acids to the marine food web. FEMS Microbiol. Lett. 219:1–7.
[23]
Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog. Lipid Res. 43:383-402.
[24]
Graeber I, Kaesler I, Borchert MS, Dieckmann R, Pape T, Lurz R et al. (2008) Spongiibacter marinus gen. nov., sp. nov., a halophilic marine bacterium isolated from the boreal sponge Haliclona sp. 1. Int. J. Syst. Evol. Microbiol. 58:585-590.
[25]
Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ et al. (1997) Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47:515–521
[26]
Collado L, Figueras MJ (2011) Taxonomy, Epidemiology, and Clinical Relevance of the Genus Arcobacter. Clin Microbiol Rev. 24(1):174-192.
[27]
Debruyne L, Gevers D and Vandamme P (2008) Taxonomy of the family Campylobactereaceae. 3-25. In Nachamkin I, Szymanski C and Blaser M. (ed.), Campylobacter, 3rd ed. ASM Press, Washington, DC.
[28]
Levican A, Collado L, Aguilar C, Yustes C, Diéguez AL, Romalde JL et al. (2012) Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst. Appl. Microbiol. 35 133-138.
[29]
Gugliandolo C, Carbone M, Fera MT, Irrera GP, Maugeri TL (2005) Occurrence of potentially pathogenic vibrios in the marine environment of the Straits of Messina (Italy). Marine Pollution Bulletin 50:682-697.
[30]
Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA & Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69:7210-7215.
[31]
Fieseler L, Horn, M, Wagner, M, Hentschel U (2004) Discovery of the Novel Candidate Phylum "Poribacteria" in Marine Sponges. Applied and Environmental Microbiology 70(6):3724–32.
[32]
Yoon J, Kasai H, Yokota A (2010) Phylogenetic interrelationship of the genus Rubritalea inferred from 16S rRNA and gyrB gene sequences. Microbiolo. Cult. Coll. 26(2):89-95.
[33]
Dworkin M, et al (Eds. 2000-2005) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. New York: Springer-Verlag
[34]
Maximilien R, De Nys R, Holmstrom C, Gram L, Givskov M, Crass K et al.(1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15: 233–246.
[35]
Taylor MW, Schupp PJ, Dahllof I, Kjelleberg S, Steinberg PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ. Microbiol. 6: 121-130.
[36]
Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosyntesys. Nat Rev Microbiol. 6:725–740.
[37]
Johnson KS, Childress JJ, Beehler CL, & Sakamoto CM (1994) Biogeochemistry of hydrothermal vent mussel communities: the deep‑sea analog to the intertidal zone. Deep Sea Res. Part I 41:993-1011.
[38]
Cappello S, Guglielmino SPP (2006) Effect of growth temperature on polystyrene adhesion of Pseudomonas aeruginosa ATCC 27853. Brazilian Journal of Microbiology 37(6): 205-207.
[39]
Cefali E, Patane S, Arena A, Saitta G, Guglielmino SPP, Cappello S, Nicolo M, Allegrini M (2002) Morphological variations in bacterial unders stress conditions: Near-field optical studies. Scanning 25(6): 274-283.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved