In Vitro Differentiation of Mice Pancreatic Tissue
[1]
Mendoza-Briceño R. V., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[2]
Peña-Contreras Z. C., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[3]
Dávila-Vera D., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[4]
Miranda-Contreras L., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[5]
Durán-Montilla F., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[6]
Labarca-Villasmil E., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
[7]
Palacios-Prü EL, Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes, Mérida, Venezuela.
Pancreatic differentiation was studied using rotary histotypic cultures prepared from mice at different fetal ages. Pancreatic tissues were dissected and incubated for 6 days. The cultures were kept under constant rotation (70 rpm) and media were oxygenated every 24h. Pancreatic cultures prepared from 15 day-old mice showed histotypical differentiation of exocrine and endocrine cell populations, whereas those obtained from 17 and 19 day-old embryos revealed an important progressive reduction of the exocrine cell population, moreover, cultures prepared from 21 day-old embryos showed few and isolated exocrine cells. The results of the present study revealed three important features: a) Embryonic pancreatic tissue cultures develop histotypic exocrine and endocrine cell elements using the above described procedure; b) An interesting and unusual phenomenon was observed as shown by the permanence of the endocrine component with increasing embryo age; c) The intrapancreatic nervous cells demonstrate numerous end terminals containing clear neurotransmitter vesicles and dark neurosecretory ones.
Exocrine, Endocrine, Pancreatic Cells, Tissue Culture, Venezuela
[1]
Nakamura M, Kitamura H, Konishi M, Ono J, Ina K, Shimada T & Takaki R. The endocrine pancreas of spontaneously diabetic db/db mice: microangipothy as revealed by transmission electron microscopy. Diabetes Res. Clin. Pract. 1995; 30: 89-100.
[2]
Singh J & Adeghate E. Effects of islet hormones on nerve-mediated and acetylcholine-evoked secretory responses in the isolated pancreas of normal and diabetic rats. Int. J. Mol. Med. 1998; 1: 627-634.
[3]
Avogaro A, Fadini GP, Gallo A, Pagnin E & de Kreutzenberg S. Endothelial dysfunction in type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2006; 16: S39-45.
[4]
Bravi MC, Armiento A, Laurenti O, Cassone-Faldetta M, De Luca O, Moretti A & De Mattia G. Insulin decreases intracellular oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2006; 55: 691-695.
[5]
Howarth FC, Jacobson M, Shafiullah M & Adeghate E. Effects of insulin treatment on heart rhythm, body temperature and physical activity in streptozotocin-induced diabetic rat. Clin. Exp. Pharmacol. Physiol. 2006; 33: 327-331
[6]
Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, Aburada M & Miyamoto K. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp. Anim. 2006; 55: 109-115.
[7]
Solowiej E, Solowie J, Godlewsk M, Motyl T, Perkowska-Ptasinska A, Jaskiewicz K, Kasprzycka-Guttman T & Rowinski W. Application of sulforaphane: histopathological study of intraportal transplanted pancreatic islets into livers of diabetic rats. Transplant Proc. 2006; 38: 282-283.
[8]
Tam J, Diamond J. Maysinger D. Dual-action peptides: a new strategy in the treatment of diabetes-associated neuropathy. Drug Discov Today. 2006; 11: 254-60.
[9]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2008; 31: S55-S60.
[10]
Ismail-Beigi F, Moghissi E, Tiktin M, Hirsch IB, Inzucchi SE, Genuth S. Individualizing glycemic targets in type 2 diabetes mellitus: implications of recent clinical trials. Ann Intern Med. 2011; 154: 554-559.
[11]
Fitzgerald DB, Kent BD, Garvey JF, Russell A, Nolan G, McNicholas WT. Screening for diabetes mellitus in patients with OSAS: a case for glycosylated haemoglobin. Eur Respir J. 2012; 40: 273 - 274.
[12]
Sever CE, Demetris AJ, Zeng J, Carrol, P, Tzakis A, Fung JJ, Starzi TE, Ricordi C. Composition of human islet cell preparations for transplantation. Acta Diabetol. 1992; 28: 233-238.
[13]
Kim D, Gu Y, Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K. In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas. 2003; 27: 34-41.
[14]
Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen KT. Islet encapsulation: strategies to enhance islet cell functions. Tissue engineering. 2007; 13: 589-599.
[15]
Biancone L, Crich SG, Cantaluppi V, Romanazzi GM, Russo S, Scalabrino E, Esposito G, Figliolini F, Beltramo S, Perin PC, Segoloni GP, Aime S, Camussi, G. Magnetic resonance imaging of gadolinium‐labeled pancreatic islets for experimental transplantation. NMR Biomed. 2007; 20: 40-48.
[16]
Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnol. 2008; 26: 443-452.
[17]
Merani S, Toso C, Emamaullee J, Shapiro AMJ. Optimal implantation site for pancreatic islet transplantation. Br J Surg. 2008; 95: 1449-1461.
[18]
Lau J, Kampf C, Mattsson G, Nyqvist D, Köhler M, Berggren PO & Carlsson PO. Beneficial role of pancreatic microenvironment for angiogenesis in transplanted pancreatic islets. Cell transplantation. 2009; 18: 23-30.
[19]
Rackham C, Chagastelles PC, Nardi NB, Hauge-Evans AC, Jones PM, King AJF. Co-transplantation of mesenchymal stem cells maintains islet organization and morphology in mice. Diabetologia. 2011; 54: 1127-1135.
[20]
Nollevaux MC, Rahier J, Marchandise J, Thurion P, Godecharles S, Van den Steen G, Jamart J, Sempoux C, Jacquemin P, Guiot Y. Characterization of β-cell plasticity mechanisms induced in mice by a transient source of exogenous insulin. Am J Physiol Endocrinol Metab. 2013; 304: E711 - E723.
[21]
Motté E, Szepessy E, Suenens K, Stangé G, Bomans M, Tulleneers-Thevissen DJ, Ling Z, Kroon E, Pipeleers D. Composition and function of macroencapsulated human embryonic stem cell-derived implants: comparison with clinical human islet cell grafts. Am J Physiol Endocrinol Metab. 2014; 307: E838 - E846.
[22]
Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, Pileggi A, Molano RD, Ricordi C, Stabler CL, Hubbell JA. Device design and materials optimization of conformal coating for islets of Langerhans. PNAS. 2014; 111: 10514 - 10519.
[23]
Scharfmann R, Czernichow P. Differentiation and growth of pancreatic beta cells. Diabetes Metab. 1996; 22: 223-228.
[24]
Yuan S, Rosenmerg L, Paraskevas S, Agapitos D, Duguid WP. Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. Differentiation. 1996; 61: 67-75.
[25]
Adeghate E, Donath T. Transplantation of tissue grafts into the anterior eye chamber: a method to study intrinsic neurons. Brain Res Protoc. 2000; 6: 33-39.
[26]
Schmied BM, Ulrich A, Matsuzaki H, Ding X, Ricordi C, Moyer MP, Batra SK, Adrian TE. Maintenance of human islets in long-term culture. Differentiation. 2000; 66: 173-180.
[27]
Chu K, Nemoz-Gaillard E, Tsai MJ. Beta2 and pancreatic islet development. Recent Prog Horm Res. 2001; 56: 23-46.
[28]
Lumelsky N, Blonde, O, Laeng P, Velasco I, Ravin R. McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science. 2001; 292: 1389-1394.
[29]
Schmied BM, Ulrich A, Matsuzaki H, Ding X, Ricordi C, Weide L, Moyer MP, Batra SK. Adrian TE. Transdifferentiation of human islet cells in a long-term culture. Pancreas. 2001; 23: 157-171.
[30]
Adeghate E. Pancreatic tissue grafts are reinnervated by neuro-peptidergic and cholinergic nerves within five days of transplantation. Transpl Immunol. 2002; 10: 73-80.
[31]
Hao E, Tyrberg B, Itkin-Ansari P, Lakey JR, Geron I, Monosov EZ, Barcova M, Mercola M, Levine F. Beta-cell differentiation from nonendocrine epithelial cells of the adult human pancreas. Na. Med. 2006; 12: 310-316.
[32]
Palacios-Prü EL, Miranda-Contreras L, Zambrano E, Mendoza-Briceño RV. Cerebral implants of histotypic hypothalamic cultures. Develop Neurosc. 1994; 16: 9-16.
[33]
Palacios-Prü EL, Peña-Contreras ZC, Mendoza-Briceño RV, Miranda-Contreras L. Intradermal implants of histotypic adrenal gland rotary cultures. Develop Neurosc. 1995; 17: 118-126.
[34]
Guide for the care and use of laboratory animals. National Academy Press. Washington, DC. 1996.
[35]
Código de Bioética y Bioseguridad. 2ª edición. Ministerio de Ciencia y Tecnología y Fondo Nacional de Ciencia y Tecnología. Caracas. 2002.
[36]
Garber BB, Moscona AA. Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing. Develop Biol. 1972; 27: 217-234.
[37]
Palacios-Prü EL, Palacios L, Mendoza-Briceño RV. In vitro vs in situ development of Purkinje cells. J Neurosc Res. 1976; 2: 357-362.
[38]
Palacios-Prü EL, Mendoza-Briceño RV. An unusual relationship between glial cells and neuronal dendrites in olfactory bulbs of Desmodus rotundus. Brain Res. 1972; 36: 204-208.
[39]
Watson HL. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958; 4: 475-478.
[40]
Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Biophys Biochem Cytol. 1963; 19: 208-212.
[41]
Palacios-Prü EL, Palacios L, Mendoza-Briceño RV. Synaptogenetic mechanisms during chick cerebellar cortex development. J Submicrosc Cytol. 1981; 13: 145-167.
[42]
Beattie GM, Rubin JS, Mally MI, Otonkoski T, Hayek A. Regulation of proliferation and differentiation of human fetal pancreatic islet cells by extracellular matrix, hepatocyte growth factor, and cell-cell contact. Diabetes. 1996; 45: 1223-1228.
[43]
Liu MT, Kirchgessner AL. Guinea pig pancreatic neurons: morphology, neurochemistry, electrical properties, and response to 5-HT. Am J Physiol Gastrointest Liver Physiol. 1997; 273: G1273-G1289.
[44]
Ushiki T, Watanabe S. Distribution and ultrastructure of the autonomic nerves in the mouse pancreas. Microsc Res Tech. 1997; 37: 339-406.
[45]
Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song HK, Sharma A, O’Neil JJ. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci. 2000; 97: 7999-8004.
[46]
Ouziel-Yahalom L, Zalzman M, Anker-Kita L, Knoller S, Bar Y, Glandt M, Herold K, Efrat S. Expansion and redifferentiation of adult human pancreatic islet cells. Biochem Biophys Re. Commun. 2006; 341: 291-298.
[47]
Ushiki T & Watanabe S. Distribution and ultrastructure of the autonomic nerves in the mouse pancreas. Microsc. Res. Tech. 1997; 37, 339-406.
[48]
Babic T, Browning KN, Kawaguch Y, Tang X, Travagli RA. Pancreatic insulin and exocrine secretion are under the modulatory control of distinct subpopulations of vagal motoneurones in the rat. J Physiol. 2012; 590: 3611 - 3622.
[49]
Rooman I, Real FX. Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development? Gut. 2012; 61: 449 – 458.
[50]
Garcia A, Mirbolooki MR, Constantinescu C, Pan ML, Sevrioukov E, Milne N, Wang PH, Lakey J, Chandy KG, Mukherjee J. 18F-Fallypride PET of pancreatic islets: In vitro and in vivo rodent studies. J Nucl Med. 2011; 52: 1125 - 1132.
[51]
Capito C, Simon MT, Aiello V, Clark A, Aigrain Y, Ravassard P, Scharfmann R. Mouse muscle as an ectopic permissive site for human pancreatic development. Diabetes. 2013; 62: 3479 - 3487. doi: 10.2337/db13-0554
[52]
Eventov-Friedman S, Reisner Y. Fetal pancreas as a source for islet transplantation: Sweet promise and current challenges Diabetes. 2013; 62: 1382 - 1383. doi: 10.2337/db13-0018.
[53]
Li W, Nakanishi M, Zumsteg A, Shear M, Wrigh C, Melton DA, Zhou O. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes. eLife Sci. 2014; 3: e01846. doi: 10.7554/eLife.01846