Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
Ultrastructural Study of Synaptogenesis in the Olfactory Bulb NMRI Mice
Current Issue
Volume 2, 2014
Issue 6 (December)
Pages: 173-179   |   Vol. 2, No. 6, December 2014   |   Follow on         
Paper in PDF Downloads: 9   Since Aug. 28, 2015 Views: 1796   Since Aug. 28, 2015
Authors
[1]
Dávila-Vera D., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
[2]
Peña-Contreras ZC, Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
[3]
Balza-Quintero JA, Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
[4]
Labarca-Villasmil E., Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
[5]
Sánchez-Gil JB, Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
[6]
Mendoza-Briceño RV, Electron Microscopy Center "Dr. Ernesto Palacios-Prü", University of Los Andes. Mérida, Venezuela.
Abstract
During the development of the olfactory bulb shows great cytological plasticity, being a widely used model to try to understand the mechanisms involved in neuronal growth and their functionalism, having consideration that it is a system establishing diversity of synaptic interactions. The purpose of this study was to know the process of formation of axodendritic and dendrodendritic synaptic contacts during the development of the olfactory bulb. Were used NMRI mice from NMRI mice were used from 17 days embryonic (E) until to 9 days postnatal (P). The tissue was processed for ultrastructural study, and variance analysis (ANOVA) was performed using the statistical program SPSS version 15. At E17 internal thickening were observed in axonal and dendritic membranes, and synaptic vesicles attached in proximity to the membrane thickenings, which increased in number and thickness older ages. Axodendritic synapses immature increase in size, thickness and number from E17 until P7, and the following quantitative differences are identified: between E17 and E19 there was an increase of 39.8%, from E19 to E21 of 4.95%, between E21 and P0 there was of 5.84%, P1 day there was a difference of 16.58% over the previous day, and from this day until P7 there was a continuous increase in the number of synapses. Moreover, the formation of dendrodendritic synapses is an exclusively postnatal phenomenon that starts the day P3, increasing their number up to P7, as evidenced by the following data found: between P3 and P5 there was a difference of 41.03% between P5 and P7 of 54.02%, and between P7 and P9 the difference there was 61.5%. In conclusion, the amount of axodendritic and dendrodendritic synapses increased until P7 day; and was at P9 when both synapses reached morphological maturity.
Keywords
Olfactory Bulb, Synaptogenesis, Neural Development, Venezuela
Reference
[1]
Huart C, Rombaux P, Hummel T. Plasticity of the human olfactory system: the olfactory bulb. Molecules. 2013; 18: 11586-11600. doi: 10.3390/molecules180911586.
[2]
Gottfried JA, Small DM, Zald DH. The chemical senses. En: Zald DH, Rauch S. The Orbitofrontal Cortex. Editorial Oxford University Press 1a edición. Oxford, Reino Unido. 2006; p. 125-171.
[3]
Zelano C, Sobel N. Humans as an animal model for systems-level organization of olfaction. Neuron. 2005; 48: 431-454.
[4]
Gregson RA, Free ML, Abbot MW. Olfaction in Korsakoffs, alchoholics and normals. Br J Clin Psychol. 1981; 20: 3-10.
[5]
Talamo BR, Rudel R, Kosik KS, Lee VM, Neff S, Adelman L, Kauer JS. Pathological changes in olfactory neurons in patients with Alzheimer's disease. Nature. 1989; 337: 736–739.
[6]
Lehrner JP, Kryspin-Exner I, Vetter N. Higher olfactory threshold and decreased odor identification ability in HIV-infected person. Chem Senses. 1995; 20: 325–328.
[7]
Zucco GM, Savoldelli A. Deficit olfattivi in soggetti Down: rapporti con il morbo di Alzheimer. Scienze dell'Interazione. 1996; 3: 103–109.
[8]
Hornung DE, Kurtz DB, Bradshaw CB, Seipel DM, Kent PF, Blair DC, Emko P. The olfactory loss that accompanies an HIV infection. Physiol Behav. 1998; 64: 549–556.
[9]
Zucco GM, Zeni MT, Perrone A, Piccolo I. Olfactory sensitivity in early stage Parkinson patients affected by more marked unilateral disorder. Percept Mot Skills. 2001; 92: 894–898.
[10]
Jubiz W, Cruz EA. El síndrome de Kallmann: A propósito de un caso. Colomb Med. 2006; 37: 315-318.
[11]
Doty R. Olfaction. Annu Rev Psychol. 2001; 52: 424-452.
[12]
Herz R, Engen T. Odor memory: review and analysis. Psychon Bull Rev. 1996; 3: 300-313.
[13]
Ruan L, Lau BW, Wang J, Huang L, Zhuge Q, Wang B, Jin K, So KF. Neurogenesis in neurological and psychiatric diseases and brain injury: From bench to bedside. Prog Neurobiol. 2013; pii: S0301-0082(13)00146-9. doi: 10.1016/j.pneurobio.
[14]
Liu Q, Li A, Gong L, Zhang L, Wu N, Xu F. Decreased coherence between the two olfactory bulbs in Alzheimer's disease model mice. Neurosci Lett. 2013; 545: 81-85. doi: 10.1016/j.neulet.2013.04.023.
[15]
Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E. VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development. 2010; 137: 261-271.
[16]
Cummings DM, Belluscio L. Continuous neural plasticity in the olfactory intrabulbar circuitry. J Neurosci. 2010; 30: 9172-9180.
[17]
Lipscomb BW, Treloar HB, Greer ChA. Novel microglomerular structures in the olfactory bulb of mice. J Neurosci. 2002; 22: 766-774.
[18]
De Saint Jan D, Hirnet D, Westbrook GL, Charpak S. External tufted cells drive the output of olfactory bulb glomeruli. J Neurosci. 2009; 29: 2043-2052.
[19]
Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, Obata K, Okano H, Toida K, Puche AC, Shipley MT. Molecular identity of periglomerular and short axon cells. J Neurosci. 2010; 30: 1185-1196.
[20]
Keller A, Yagodin S, Aroniadou-Anderjaska V, Zimme LA, Ennis M, Sheppard Jr NF, Shipley MT. Functional organization of rat olfactory bulb glomeruli revealed by optical imaging. J Neurosci. 1998; 18: 2602-2612.
[21]
Bartel DL, Rela L, Hsieh L, Greer CA. Dendrodendritic synapses in the mouse olfactory bulb external plexiform layer. J Comp Neurol, 2014; Nov 25. doi: 10.1002/cne.23714. [Epub ahead of print].
[22]
Barkovich AJ, Chuang SH, Norman D. MR of neuronal migration anomalies. AJNR Am J Neuroradiol. 1987; 8: 1009 - 1017.
[23]
Guide for the care and use of laboratory animals. National Academy Press. Washington, DC. 1996.
[24]
Código de Bioética y Bioseguridad. 2ª edición. Ministerio de Ciencia y Tecnología y Fondo Nacional de Ciencia y Tecnología. Caracas. 2002.
[25]
Palacios-Prü EL, Mendoza-Briceño RV. An unusual relationship between glial cells and neuronal dendrites in olfactory bulbs of Desmodus rotundus. Brain Res. 1972; 36:404-408.
[26]
Price JL, Powell TPS. The morphology of the granule cells of the olfactory bulb. J Cell Sci. 1970a; 7: 91-123.
[27]
Pinching AJ, Powell TPS. The neuropil of the glomeruli of the olfactory bulb. J Cell Sci. 1971; 9: 347-377.
[28]
Prince JL, Powell TPS. The mitral and short axon cells of the olfactory bulb. J Cell Sci. 1970b; 7: 631-651.
[29]
Takami S, Toida K. Structure and function of the olfactory system: overview. Anat Sci Int. 2008. 83: 183-185.
[30]
Whitman MC, Greer CA. Adult neurogenesis and the olfactory system. Prog Neurobiol. 2009; 89: 162-75.
[31]
Christie JM, Schoppa NE, Westbrook GL. Tufted cell dendrodendritic inhibition in the olfactory bulb is dependent on NMDA receptor activity. J Neurophysiol. 2001; 85: 169-173.
[32]
Ennis M, Zhou FM, Ciombor KJ, Aroniadou-Anderjaska V, Hayar A, Borrelli E, Zimmer LA, Margolis F, Shipley MT. Dopamine D2 receptor-mediated presynaptic inhibition of olfactory nerve terminals. J Neurophysiol. 2001; 86: 2986-2997.
[33]
Ennis M, Zhu M, Heinbockel T, Hayar A. Olfactory nerve–evoked, metabotropic glutamate receptor–mediated synaptic responses in rat olfactory bulb mitral cells. J Neurophysiol. 2006; 95: 2233-2241.
[34]
Sonego M, Zhou Y, Oudin MJ, Doherty P, Lalli G. In vivo postnatal electroporation and time-lapse imaging of neuroblast migration in mouse acute brain slices. J Vis Exp. 2013; doi: 10.3791/50905.
[35]
Brennan P, Keverne EB. Biological complexity and adaptability of simple mammalian olfactory memory systems. Neurosci Biobehav Rev. 2014 Oct 31. pii: S0149-7634(14)00272-3. doi: 10.1016/j.neubiorev.2014. 10.020. [Epub ahead of print].
[36]
Hayar A, Karnup S, Ennis M, Shipley MT. External tufted cells: A major excitatory element that coordinates glomerular activity. J Neurosci. 2004a; 24: 6676-6685.
[37]
Huang L, Garcia I, Jen HI, Arenkiel BR. Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb. Front Neural Circuits. 2013; 7: 32. doi: 10.3389/fncir.2013.00032.
[38]
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional regulation of olfactory bulb neurogenesis. Anat Rec (Hoboken). 2013; 296: 1364-1382. doi: 10.1002/ar.22733.
[39]
Crespo C, Liberia T, Blasco-Ibáñez JM, Nácher J, Varea E. The circuits of the olfactory bulb. The exception as a rule. Anat Rec (Hoboken). 2013; 296: 1401-1412. doi: 10.1002/ar.22732.
[40]
Blanchart A, Romaguera M, García-Verdugo JM, de Carlos JA, López-Mascaraque L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. Eur J Neurosci. 2008; 27: 2838-2846.
[41]
Marchand R, Bélanger MC. Ontogenesis of the axonal circuitry associated with the olfactory system of the rat embryo. Neurosci Lett. 1991; 129: 285-290.
[42]
Walton RM. Postnatal neurogenesis: of mice, men, macaques. Vet Pathol. 2012; 49: 155-165.
[43]
Kopel H, Schechtman E, Groysman M, Mizrahi A. Enhanced synaptic integration of adult-born neurons in the olfactory bulb of lactating mothers. J Neurosci. 2012; 32: 7519-7527.
[44]
Mair RG, Gellman RL, Gesteland RC Postnatal proliferation and maturation of olfactory bulb neurons in the rat. Neuroscience. 1982; 7: 3105-3116.
[45]
Engen T. The Perception of Odors. New York. Academic Press. 1982.
[46]
Nieuwenhuys R, Voogd J, Van Huijzen CHR. The human central nervous system, a synopsis and atlas. 2a ed. Berlin. Springer- Verlag. Versión en castellano de C. Barastegui Almagro (1982): Sinopsis y Atlas del Sistema Nervioso Humano. Madrid. Ed. AC. 1981.
[47]
Tran H, Chen H, Walz A, Posthumus JC, Gong Q. Influence of olfactory epithelium on mitral/tufted cell dendritic outgrowth. PLoS One. 2008; 3: 1-8.
[48]
Lledo PM, Carleton A, Vincent D. Odeur et olfaction. J Soc Biol. 2002; 196: 59-65.
[49]
Shipley MT, Ennis M. Functional organization of olfactory system. J Neurobiol. 1996; 30: 123-176.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved