Charged Stellar Model with Quadratic Equation of State in Tolman VII Spacetime
In this paper, we studied the behavior of relativistic objects considering Tolman VII form for the gravitational potential Z and a quadratic equation of state for the charged anisotropic matter distribution. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. The new obtained solution not admits singularities in the matter, charge density and metric functions. A graphical analysis indicates that the new stellar model satisfy all physical properties expected in a realistic star.
Relativistic Objects, Anisotropic Matter, Tolman VII Potential, Quadratic Equation of State, Gravitational Potential
[1]
P. K. Kuhfitting, Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367, 2011.
[2]
J. Bicak, Einstein equations: exact solutions, Encyclopedia of Mathematical Physics, 2, 165-173, 2006.
[3]
M. Malaver, Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9, 2013.
[4]
K. Komathiraj, S. D. Maharaj, Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav., 39, 2079-2093, 2008.
[5]
R. Sharma, S, Mukherjee, S. D. Maharaj, General solution for a class of static charged stars, Gen. Rel. Grav., 33, 999-110, 2001.
[6]
R. L. Bowers, E. P. T. Liang, Anisotropic spheres in general relativity, Astrophys. J., 188, 657, 1974.
[7]
M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of anisotropic spheres in general relativity, J. Math. Phys., 22(1), 118, 1981.
[8]
M. K. Gokhroo, A. L. Mehra, Anisotropic spheres with variable energy density in general relativity, Gen. Relat. Grav., 26(1), 75-84, 1994.
[9]
A. I. Sokolov, Phase transitions in a superfluid neutron liquid, Sov. Phys. JETP., 52, 575, 1980.
[10]
V. V. Usov, Electric fields at the quark surface of strange stars in the color-flavor locked phase, Phys. Rev. D, 70, 067301, 2004.
[11]
K. Komathiraj, S. D. Maharaj, Analytical models for quark stars, Int. J. Mod. Phys., D16, pp. 1803-1811, 2007.
[12]
M. Malaver, Models for quark stars with charged anisotropic matter, Research Journal of Modeling and Simulation, 1(4), 65-71, 2014.
[13]
M. Malaver, Some new models for strange quark stars with isotropic pressure, AASCIT Communications, 1, 48-51, 2014.
[14]
S. Thirukkanesh, S. D. Maharaj, Charged anisotropic matter with linear equation of state, Class. Quantum Gravity, 25, 235001, 2008.
[15]
S. D. Maharaj, J. M, Sunzu, and S. Ray, Some simple models for quark stars, Eur. Phys. J. Plus., 129, 3, 2014.
[16]
S. Thirukkanesh, F. C. Ragel, A class of exact strange quark star model, PRAMANA-Journal of physics, 81(2), 275-286, 2013.
[17]
J. M. Sunzu, S. D. Maharaj S. Ray, Quark star model with charged anisotropic matter, Astrophysics. Space. Sci. 354, 517- 524, 2014.
[18]
T. Feroze, A. Siddiqui, Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035, 2011, 2011.
[19]
T. Feroze, and A. Siddiqui, Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society, 65(6), 944-947, 2014.
[20]
M. Malaver, Strange quark star model with quadratic equation of state, Frontiers of Mathematics and Its Applications., 1(1), 9-15, 2014.
[21]
M. Malaver, Quark star model with charge distributions, Open Science Journal of Modern Physics., 1(1), 6-11, 2014.
[22]
M. Malaver, Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application., 2(1), 1-6, 2015.
[23]
M. Malaver, Classes of Relativistic Stars with Quadratic Equation of State, World Scientific News., 57, 70-80, 2016.
[24]
P. M. Takisa, S. D. Maharaj, Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969, 2013.
[25]
S. Thirukkanesh, F. C. Ragel, Exact anisotropic sphere with polytropic equation of state, PRAMANA-Journal of physics, 78(5), 687-696, 2012.
[26]
M. Malaver, Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics, 1(4), 41-46, 2013.
[27]
M. Malaver, Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming., 3, 309-313, 2013.
[28]
S. Thirukkanesh, F. C. Ragel, Strange star model with Tolmann IV type potential, Astrophysics and Space Science, 352(2), 743-749, 2014.
[29]
M. K Mak, T. Harko, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys, D13, 149-156, 2004.
[30]
P. Bhar, M. H. Murad, N. Pant, Relativistic anisotropic stellar models with Tolman VII spacetime, Astrophysics and Space Science, 359:13. doi: 10.1007/s10509-015-2462-9, 2015.
[31]
P. Bhar, K. N, Singh, N. Pant, Compact star modeling with quadratic equation of state in Tolman VII spacetime, Indian Journal of Physics. doi:10.1007/s12648-017-0963-9, 2017.
[32]
M. C. Durgapal, R. Bannerji, New analytical stellar model in general relativity, Phys. Rev. D27, 328-331,1983.
[33]
R. C. Tolman, Static solutions of Einstein's Field Equations for spheres of fluid, Phys. Rev., 55, 364-373, 1939.
[34]
L. Herrera, Cracking of self-gravitating compact objects, Phys. Lett. A, 165(3), 206-210, 1992.