[1]
Aldona Krupska, Institute of Molecular Physics PAS, M. Smoluchowski, Poznań, Poland.
[2]
Marcin Krupski, Institute of Molecular Physics PAS, M. Smoluchowski, Poznań, Poland.
In this review the role played by pressure in space will be presented. It will be presented the Friedman's and Einstein theory. It will be shown the role of pressure in forming the metallic form of hydrogen, helium and iron play an important role in the for-mation of the magnetic field. It will be also shown the role of pressure in the fomation the amorphous forms of ice in space of which presumably originates the water on our planet. Will be also mentioned the role of negative pressure in the inflation of the Universe and its role in the formation of wormholes. We will show the role of pressure in the evolution of the Universe and in forming the objects such as black holes, red giant, white dwarfs, neutron stars.
Space, Pressure, Negative Pressure, Metallic Hydrogen and Helium, Amorphous Ice, Evolution of the Universe
[1]
Einstein A. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Berlin, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften, 1917, pp.142-152 (in German).
[2]
Friedman A. Über die Krümmung des Raumes. Zeitschrift für Physik. 1922; 10(1): 377–386. (in German). English translation in: Friedman A. On the curvature of space. General Relativity and Gravitation 1999; 31(12):1991–2000.
[3]
Friedman A. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeitschrift für Physik. 1924; 21(1): 326–332 (in German). English translation in: Friedmann A. On the Possibility of a World with Constant Negative Curvature of Space. General Relativity and Gravitation 1999; 31(12):2001–2008.
[4]
Lebedew P. Untersuchungen über die Druckkräfte des Lichtes. (in English: Studies on the compressive forces of the light.) Annalen der Physik 1901; 6:433–58.
[5]
Nonaka Ch, Bass SA. Space-time evolution of bulk QCD matter. 2006, ArXiv:nucl-th/0607018v1.
[6]
Griffiths DJ. Introduction to Quantum Mechanics. London; Prentice Hall, 1994, Equation 5.46.
[7]
Robitaille PM. Liquid metallic hydrogen: a building block for the liquid sun. Prog Phys 2011; 3: 60-74.
[8]
Weir ST, Mitchell AC, Nellis WJ. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys Rev Lett 1996; 76(11):1860.
[9]
Hazen RM, Mao HK, Finger LW, Hemley RJ. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys Rev B 1987; 36(7):3944-3947.
[10]
Wigner E, Huntington HB. Possibility of a metallic modification of hydrogen. J Chem Phys 1935;3:764–770.
[11]
Jenniskens P, Blake F, Kouchi A. Amorphous water ice. A solar system material. In: Schmitt B,et al. (eds.), Solar System lees. Kluwer Academic Publishers, 1998: pp. 139-155.
[12]
Loerting T, Fuentes-Landete V, Handle PH, Seidl M, Amann-Winkel K, Gainaru C, Böhmer R. The glass transition in high-density amorphous ice. J. Non-Cryst Solids 2015;407:423–430.
[13]
Meech KJ, Pittichová J, Bar-Nun A, Notesco G, Laufer D, Hainaut OR, Lowry SC, Yeomans DK, Pitts M. Activity of comets at large heliocentric distances pre-perihelion. Icarus 2009; 201:719–739.
[14]
Tancredi G, Rickman H, Greenberg J M. Thermochemistry of cometary nuclei 1: The Jupiter family case. Astron Astrophys 1994; 286:659.
[15]
Hosek MW Jr; Blaauw RC, Cooke WJ, Suggs RM. Outburst Dust Production of Comet 29P/Schwassmann-Wachmann 1. Astronom J 2013; 145:122.
[16]
Gronkowski P. The search for a cometary outbursts mechanism: a comparison of various theories. Astronomische Nachrichten 2007;328:126 -13.
[17]
Jenniskens P, Blake DF. A mechanism for forming deep cracks in comets. Planet Space Sci 1996; 44:711-713.
[18]
Jenniskens P, Blake DF, Wilson MA, Pohorille A. High-Density Amorphous Ice, the Frost on Interstellar Grains. Astrophys J 1995;401:389.
[19]
Omont A, Forveille T, Moseley SH, Glaccum WJ, Harvey PM, Likkel L, Loewenstein F, Lisse CM. Observations of 40-70 micron bands of ice in IRAS 09371 + 1212 and other stars. Astrophys J 1990; 355:L27.
[20]
Kouchi A, Yamamoto T, Kozasa T, Kuroda T, Greenberg JMH. Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices. Astron Astrophys 1994;290:1009.
[21]
Brown RH, Cruikshank DP, Pendleton. Water Ice on Kuiper Belt Object 1996 TO_66.6. The Astrophys J 1999;519:L101.
[22]
Fornasier S, Dotto E, Barucci MA, Barbieri C. Water ice on the surface of the large TNO 2004 DW. Astron Astrophys 2004; 422:L43.
[23]
Jewitt DC, Luu J. Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature 2004;432(7018):731–3.
[24]
Hansen GB, McCord TB. Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes. J Geophys Res 2004; 109:E01012.
[25]
Newman SF, Buratti BJ, Brown RH, Jaumann R, Bauer J, Momary T. Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus 2008;193:397–406.
[26]
Guth A, Steinhardt P. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Scientific American 1994;5: 116-120.
[27]
Vishwakarma RG. Einstein’s gravity under pressure. Astophys Space Sci 2009; 321(2):151–156.
[28]
Dolan BP. Pressure and volume in the first law of black hole thermodynamics. 11 Nov 2011: arXiv:1106.6260v3 [gr-qc].