Welcome to Open Science
Contact Us
Home Books Journals Submission Open Science Join Us News
On the Observed Mass Distribution of Compact Stellar Remnants in Close Binary Systems and Localizability of Gravitational Energy
Current Issue
Volume 2, 2015
Issue 6 (December)
Pages: 51-58   |   Vol. 2, No. 6, December 2015   |   Follow on         
Paper in PDF Downloads: 160   Since Oct. 14, 2015 Views: 2183   Since Oct. 14, 2015
Authors
[1]
Vladimir V. Sokolov, Special Astrophysical Observatory of Russian Academy of Sciences, Nizhnij Arkhyz, Russia.
Abstract
There are two new observational facts: (1) the mass spectrum of neutron stars and black hole candidates (or collapsars) shows an evident absence of compact objects with masses within the interval from 2 Mʘ (with a peak for neutron stars about 1.4 Mʘ) to approximately 6 Mʘ, (2) and in close binary stellar systems with a low-massive (about 0.6 Mʘ) optical companion the most probable mass value (the peak in the masses distribution of black hole candidates) is close to 6.7 Mʘ. The problem of the compact objects discrete mass spectra demands some solution both in the context of the supernovae and gamma-ray bursts relation, and in connection with the core-collapse supernovae explosion mechanism itself. In gravidynamics – a totally non-metric scalar-tensor model of gravitational interaction (or a certain modified, extended Feynman approach) with localizable field energy, the total mass of a compact relativistic object is MQ ≈ 6.7 Mʘ with a region filled by matter (quark-gluon plasma, the bag) with radius r* = GMQ/c2 ≈ 10 km. The total (measurable) mass MQ of such an extremely dense object already half consists of the field only, or of its scalar-tensor mixture around. Polarized emission of long gamma-ray bursts, a black-body component in their spectra and other observed properties could be explained by the direct manifestation of a surface of these collapsars.
Keywords
Neutron Stars, Black Holes, Supernovae, Gamma-Ray Bursts, Dense Matter, Gravitation
Reference
[1]
Finn, L. S. 1994, Physical Review Letters, 73, 1878.
[2]
Kalogera, V., & Baym, G. 1996, Astrophys. J. (Letters), 470, L61.
[3]
Bailyn, C. D., Jain, R. K., Coppi, P., & Orosz, J. A. 1998, ApJ, 499, 367.
[4]
Thorsett, S. E., & Chakrabarty, D. 1999, ApJ, 512, 288.
[5]
Kaper, L., van der Meer, A., van Kerkwijk, M., van den Heuvel, E. 2006, The Messenger, 126, 27.
[6]
Nice, D. J., Stairs, I. H., & Kasian, L. E. 2008, in AIP Conf. Proc. Ser 983, “40 Years of Pulsars: Millisecond Pulsars, Magnetars and More”, eds C. G. Bassa, Z. Wang, A. Cumming, & V.M. Kaspi, Springer-Verlag: American Institute of Phisics, 983, 453.
[7]
Özel, F., Psaltis, D., Narayan, R., & A. Santos Villarreal, 2012, ApJ, 757, 55.
[8]
Özel, F., Psaltis, D., Narayan, R. & McClintock, J. E. 2010, ApJ, 725, 1918.
[9]
Schwab, J., Podsiadlowski, P., & Rappaport, S. 2010, ApJ, 719, 722.
[10]
Farr, W. M., Sravan, N., Cantrell, A. et al. 2011, ApJ, 741, 103.
[11]
Kreidberg, L., Bailyn, C. D., Farr, W. M., & Kalogera, V. 2012, ApJ, 757, 36.
[12]
Kiziltan, B., Kottas, A., De Yoreo, M. & Thorsett, S.E. 2013, ApJ, 778, 66.
[13]
Petrov, V. S., Cherepaschuk, A. M., & Antokhina, E. A. 2014, Astronomy Reports, 58, No. 3, 113 (Original Russian Text: V. S. Petrov, A. M. Cherepashchuk, & E. A. Antokhina, Astronomicheskii Zhurnal, 2014, 91, No. 3, 167).
[14]
Kopylov, I. M., & Sokolov, V. V. 1984, Pis'ma v Astronomicheskii Zhurnal, 10, 756 (Further Evidence for Precession of the Optical Star in the Cygnus X-1 System) in Russian.
[15]
Sokolov, V. V. 1987, Astronomicheskii Zhurnal, 64, issue 4, 12 (On parameters of the Cygnus X-1 system) in Russian.
[16]
Shapiro, S. L., & Teukolsky, S. A., 1983, “Black Holes, White Dwarfs, and Neutron Stars” (ch.9), John Wiley & Sons, New York.
[17]
Wong, Ts.-W., Fryer, C.L., Ellinger, C.L., Rockefeller G., & Kalogera, V. 2014, preprint, arXiv:1401.3032 [astro-ph. HE] (The Fallback Mechanisms in Core-Collapse Supernovae)
[18]
Postnov, K. A., & Cherepashchuk, A. M. 2003, Astron. Rep. 47, 989.
[19]
Wiktorowicz, G., Belczynski1, K., Maccarone, T.J. 2013, preprint, arXiv: 1312.5924 [astro-ph. HE] (Black Hole X-ray Transients: The Formation Puzzle).
[20]
Cherepaschuk, A. M., 2013, “Close Binary Stars“, FIZMATLIT, Moscow (in Russian).
[21]
Buballa, M. et al. 2014, summary of the EMMI Rapid Reaction Task Force on "Quark Matter in Compact Stars", October 7-10, 2013, FIAS, Goethe University, Frankfurt, Germany, preprint, arXiv:1402.6911 [astro-ph. HE].
[22]
Sokolov, V.V. 1992, Astrophysics and Space Science, 197, 179.
[23]
Sokolov, V.V., & Zharykov, S.V. 1993, Astrophysics and Space Science, 201, 303.
[24]
Witten, E. 1984, Phys. Rev. D30, 273.
[25]
Sokolov, V. V., & Zharykov, S. V. 1994, Bulletin of the Special Astrophysical Observatory, 37/3, 61.
[26]
Feynman, R. P., Morinigo, F. B., & Wagner, W. G. 1995, “Feynman Lectures on Gravitation”, Addison-Wesley: Caltech, Pasadena, California Sokolov, V.V. 1992, Astrophysics and Space Science, 198, 53.
[27]
Sokolov, V.V. 1992, Astrophysics and Space Science, 198, 53.
[28]
Weisberg, J. M., Nice, D. J., & Taylor, J. H. 2010, ApJ, 722, 1030.
[29]
Sokolov, V. V. 2013, in Proceedings of XXIXth International Workshop On High Energy Physics, “New results and actual problems in particle & astroparticle physics and cosmology” (IHEP, Protvino, Russia, June 23-28), eds R. Ryutin, V. Petrov, V. Kiselev, World Scientific: New Jersey, London, Singapure, Beijing, p. 201 (arXiv: 1310.7730 [astro-ph. HE], The gamma-ray bursts and core-collapse supernovae – global star forming rate peaks at large redshifts).
[30]
Müller, B., & Janka, H.-Th. 2014, preprint, arXiv: 1409.4783 [astro-ph. HE] (Non-Radial Instabilities and Progenitor Asphericities in Core-Collapse Supernovae).
[31]
Janka, H.-Th. 2012, Annual Review of Nuclear and Particle Science, 62, 407.
[32]
Burrows, A., 2012, in press (arXiv: 1210.4921 [astro-ph. HE], Perspectives on Core-Collapse Supernova Theory).
[33]
Frontera, F., Amati, L., Zand, J. J. M. in’t, Lazzati, D., Konigl, A., Vietri, M., Costa, E., Feroci, M., Guidorzi, C., Montanari, E., Orlandini, M., Pian, E., Piro, L. 2004, ApJ, 616, 1078 (arXiv: astro-ph/0408436).
[34]
Imshennik V. S., & Nadëzhin, D. K. 1988, Soviet Scientific Reviews, ser. E, Astrophysics and Space Physics, vol.4, Harwood Academic Publishers, Switzerland (Original Russian text: Uspekhi Fizicheskikh Nauk 156, iss. 4).
[35]
Belczynski, K., Wiktorowicz, G., Fryer, C.L., Holz, D.E. & Kalogera, V. 2012, ApJ, 757, 91.
[36]
Sokolov, V. V., Bisnovatyi-Kogan, G. S., Kurt, V. G., Gnedin, Yu. N., Baryshev, Yu. V. 2006, Astronomy Reports, 50, No.8, 612 (arXiv: astro-ph/0607644).
[37]
Weber, F., Contrera, G.A., Orsaria, M. G., Spinella, W., Zubairi, O. 2014, preprint, arXiv: 1408.0079 [astro-ph. HE] (Properties of High-Density Matter in Neutron Stars).
[38]
Lattimer, J. M. 2012, ARNPS, 62, 485.
[39]
Mao, J., Wang, J. 2013, ApJ, in press (arXiv: 1309.5257 [astro-ph. HE], Application of Jitter Radiation: Gamma-ray Burst Prompt Polarization).
[40]
Clausen, D., Piro, L. A., & Ott, C. D. 2014, ApJ, in press (arXiv: 1406.4869 [astro-ph. HE], The Black Hole Formation Probability).
[41]
Psaltis, D. 2008, review article for Living Reviews in Relativity (arXiv: 0806.1531 [astro-ph], Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum).
[42]
Maselli, A., Leonardo L., Pani, P., Stella, L., Ferrari, V. 2014, preprint, arXiv: 1412.3473 [astro-ph. HE] (Testing Gravity with Quasi Periodic Oscillations from accreting Black Holes).
[43]
Landau, L.D., and Lifshitz, E.M. 1973, Theory of Fields, Nauka, Mocow, p. 504.
Open Science Scholarly Journals
Open Science is a peer-reviewed platform, the journals of which cover a wide range of academic disciplines and serve the world's research and scholarly communities. Upon acceptance, Open Science Journals will be immediately and permanently free for everyone to read and download.
CONTACT US
Office Address:
228 Park Ave., S#45956, New York, NY 10003
Phone: +(001)(347)535 0661
E-mail:
LET'S GET IN TOUCH
Name
E-mail
Subject
Message
SEND MASSAGE
Copyright © 2013-, Open Science Publishers - All Rights Reserved