On the Passive Exposure to Nicotine from Traditional Cigarettes Versus e-Cigarettes
[1]
Daniel Martín, Laser and Molecular Beam Department, Institute Pluridisciplinar, Madrid Complutense University, Madrid, Spain; Molecular Physical Chemistry Research Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal.
[2]
Miguel Peñín-Ibáñez, Analytical Chemistry Department, Faculty of Chemistry, Madrid Complutense University, Madrid, Spain; Applied Physical Chemistry Department, Faculty of Sciences, Madrid Autonoma University, Madrid, Spain.
[3]
Alicia González Gonzálvez, Laser and Molecular Beam Department, Institute Pluridisciplinar, Madrid Complutense University, Madrid, Spain; Applied Physical Chemistry Department, Faculty of Sciences, Madrid Autonoma University, Madrid, Spain.
[4]
María Jesús Santos-Delgado, Analytical Chemistry Department, Faculty of Chemistry, Madrid Complutense University, Madrid, Spain.
[5]
Angel González Ureña, Laser and Molecular Beam Department, Institute Pluridisciplinar, Madrid Complutense University, Madrid, Spain; Applied Physical Chemistry Department, Faculty of Sciences, Madrid Autonoma University, Madrid, Spain.
This study reports on the measurement and comparison of passive exposures to nicotine from smokers/vapers of conventional and e-cigarettes, respectively. To this end, a smoking machine was constructed whose experimental conditions can be easily changed and in which the nicotine of the produced smoke or aerosol was trapped and further analyzed by HPLC. The main results of the present work were (a) the average value of nicotine delivered per puff, was 42 ± 0.3 μg/puff for the combustion cigarette and 25 ± 0.2 μg/puff for the e-cigarette (b) it was found a drastic reduction to nicotine exposure in the passive subject when the active smoker was replaced by the active vaper. Specifically, at a distance of 100 cm, the passive smoker reduced its exposure to nicotine from 600 ng/puff to five ng/puff when the active subject was vaping an e-cigarette. The main conclusion of the investigation was the drastic reduction to nicotine exposure of the passive subject with the use of the e-cigarettes. instead of conventional cigarettes by the active vaper or smoker, respectively. Finally the present study suggest that the nicotine exposure experienced by the passive subject may follow an inverse quadratic dependence with the distance from the active smoker or vaper.
HPLC, E-cigarette, Passive Smoking, Nicotine Exposure
[1]
A. M. Glasser, L. Collins, J. L. Pearson, Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am. J. Prev. Med. 52 (2017) e33-e66.
[2]
J. M. Logue, M. Sleiman, V. N. Montesinos, M. L. Russell, M. I. Litter, N. L. Benowitz, L. A. Gundel, H. Destaillats. Emissions from Electronic Cigarettes: Assessing Vapers´ Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts. Environ. Sci. Technol. 51 (2017) 9271-9279.
[3]
T. R. McAuley, P. K. Hopke, J. Zhao, S. Babaian. Comparison of the effects of e-cigarette vapor and cigarette smoke on indoor air quality. Inhal. Toxicol. 24 (2012) 850-857.
[4]
D. Gallart-Mateu, L. Elbal, S. Armenta, M. de la Guardia. Passive exposure to nicotine from e-cigarettes. Talanta. 152 (2016) 329–334.
[5]
B. A. Majeed, S. R. Weaver, K. R. Gregory, C. F. Whitney, P. Slovic, T. F. Pechacek, M. P. Eriksen. Changing Perceptions of Harm of E-Cigarettes Among U. S. Adults, 2012-2015. Am. J. Prev. Med. 52 (2017) 331-338.
[6]
M. L. Goniewicz, J. Knysak, M. Gawron, L. Kosmider, A. Sobczak J. Kurek, A. Prokopowicz, M. Jablonska-Czapla, C. Rosik-Dulewska, C. Havel, P. Jacob, N. Benowitz. Levels of selected carcinogens and toxicants in vapor from electronic cigarettes. Tob Control. 23 (2) (2014) 133–139.
[7]
R. E. Bunell, I. T. Agaku, R. A. Arrazola et al. Intentions to Smoke Cigarettes Among Never-Smoking US Middle and High School Electronic Cigarette Users: National Youth Tobacco Survey, 2011-2013. Nicotine Tob. Res. 17 (2015) 228-235.
[8]
L. T. Kozlowski, D. Lynn Homish, G. G. Homish, Daily users compared to less frequent users find vape as or more satisfying and less dangerous than cigarettes, and are likelier to use non-cig-alike vaping products. Prev. Med. Rep. 6 (2017) 111-114.
[9]
A. B. Breland, T Spindle, M. Weaver, T. Eissenberg. Science and electronic cigarettes: current data, future needs. J Addict Med. 8 (2014) 223–233.
[10]
Z. Sanford, L. Goebel. E-cigarettes: an up to date review and discussion of the controversy. W V Med J. 110 (2014) 10–15.
[11]
A. Breland, E. Soule, A. Lopez, C. Ramoa, A. El-Hellani, T. Eissenberg Electronic cigarettes: what are they and what do they do? Ann N Y Acad Sci. Online January 15, 2016. http://dx. doi. org/10. 1111/nyas. 12977.
[12]
A. A. Lopez, T., Eissenberg. Science and the evolving electronic cigarette. Prev. Med. 80 (2015) 101–106.
[13]
N, Campbell-Heider, D Snow. Teen use of electronic cigarettes: what does the research tell us? J Addict Nurs. 27 (2016) 56–61.
[14]
A. Marsot, N. Simon. Nicotine and cotinine levels with electronic cigarette: a review. Int. J Toxicol. 35 (2016) 179–185.
[15]
A. Zulkifli, E. Z. Abidin, N. Z. Abidin, A. S. Amer Nordin, S. M. Praveena, S. N. Syed Ismail, I. Rasdi, K. Karuppiah, A. A. Rahman. Electronic cigarettes: a systematic review of available studies on health risk assessment. Rev Environ Health. Online April 21, 2016. http://dx. doi. org/10. 1515/ reveh-2015-0075.
[16]
T. Schripp, D. Markewitz, E. Uhde, T. Salthammer. Does e-cigarette consumption cause passive vaping? Indoor Air. 23 (2013) 25-31.
[17]
O. Geiss, I. Bianchi, F. Barahona, J. Barrero-Moreno. Characterisation of mainstream and passive vapors emitted by selected electronic cigarettes. Int. J. Hyg. Envir. Heal 218 (2015) 169-180.
[18]
J. Czogala, M. L. Goniewicz, B. Fidelus, W. Zielinska-Danch, M. J. Travers, A. Sobczak. Secondhand Exposure to Vapors from Electronic Cigarettes. Nicotine Tob. Res. 16 (2014) 655-662.
[19]
Royal College Physicians. Nicotine without smoke: Tobacco harm reduction. London April 2016.
[20]
A. McNeill, L. S. Brose, R. Calder, S. Hitchman, P. Hajek, E. McRobbie. E- cigarettes: An Evidence Update—A Report Commissioned by Public Health England. London: Public Health England, 2015.
[21]
A. Sinjewel, E. L. Swart, H. Lingeman and A. J. Wilhelm. LC Determination of Propylene Glycol in Human Plasma after Pre-Column Derivatization with Benzoyl Chloride. Chromatographia 66 (2007), 66, 103–105.
[22]
V. Patel Jinesh, B. Patel Dipti. Development and validation of reverse phase high performance liquid chromatography method for estimation of nicotine in nicotine gum tablet. Int. J. of Pharm. Drug Anal. 2 (2014) 291-295.
[23]
J. P. Schaller, D. Keller, L. Poget, P. Pratte, E. Kaelin, D. McHugh, G. Cudazzo, D. Smart, A. R. Tricker, L. Gautier, M. Yerly, R. R. Pires, S. Le Bouhellec, D. Gosh, I. Hofer, E. Garcia, P. Vanscheeuwijck, S. Maeder. Evaluation of the Tobacco Heating System 2. 2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul. Toxicol. Pharmacol. 81 (2016) S27-S47
[24]
M. L. Trehy, W. Ye, M. E. Hadwiger, T. W. Moore, J. F. Allgire, J. T. Woodruff, S. S. Ahadi, J. C. Black, B. J. Westenberger. Analysis of electronic cigarette cartridges, refill solutions, and smoke for nicotine and nicotine related impurities. J. Liq. Chromatogr. Relat. Technol. 34 (2011) 1442-1458.