

Endosymbiotic Actinidic Archaeal Modulated Mirror Quantal Perceptive Neurons Mediate Consciousness and Functions as Quantal Observer

Introduction

The human endosymbiotic actinidic archaea catabolises cholesterol and uses it for its energy metabolism. The ring oxidation of cholesterol generates pyruvate which enters the GABA shunt pathway resulting in the formation of succinyl CoA and glycine used for porphyrin synthesis. The side chain oxidation of cholesterol results in steroid synthesis and the generation of the steroidal glycoside digoxin which serves as an endogenous regulator of the sodium potassium pump inhibiting it. The archaea are magnetotactic and contain the dipolar porphyrins and magnetite. Digoxin by inhibiting the sodium potassium ATPase generates a pumped phonon system involving dipolar porphyrins and magnetite. This generates a Frohlich model of Bose-Einstein condensate at normal temperature resulting in quantal perception. The quantal perception can result in perceiving low level of EMF from the environment. This can generate conscious perception. The generation of porphyrins and digoxin in actinidic archaeal neurons was tested in disorders of consciousness schizophrenia and autism.¹⁻¹⁷

Materials and Methods

Freshly diagnosed schizophrenia and autism based on DSM IV criteria were chosen fro the study. Serum cytochrome 450, digoxin synthesis and porphyrin synthesis were studied. There were 10 patients in each group and each patient had an age and sex matched healthy control selected randomly from the general population. The blood samples were drawn in the fasting state before treatment was initiated. Plasma from fasting heparinised blood was used and the experimental protocol was as follows (I) Plasma+phosphate buffered saline, (II) same as I+cholesterol substrate, (III) same as II+cerium 0.1 mg/ml, (IV) same as II+ciprofloxacine and doxycycline each in a concentration of 1 mg/ml.

Cholesterol substrate was prepared as described by Richmond. Aliquots were withdrawn at zero time immediately after mixing and after incubation at 37°C for 1 hour. The following estimations were carried out: - Cytochrome F420, digoxin and ALA. Cytochrome F420 was estimated flourimetrically (excitation wavelength 420 nm and emission wavelength 520 nm).

Results

Plasma of control subjects showed increased levels of the above mentioned parameters with after incubation for 1 hour and addition of cholesterol substrate resulted in still further significant increase in these parameters. The plasma of patients showed similar results but the extent of increase was more. The addition of antibiotics to the control plasma caused a decrease in all the parameters while addition of cerium increased their levels. The addition of antibiotics to the patient's plasma caused a decrease in all the parameters while addition of cerium increased their levels but the extent of change was more in patient's sera as compared to controls. The results are expressed in tables 1-3 as percentage change in the parameters after 1 hour incubation as compared to the values at zero time.

Table 1. Effect of cerium and antibiotics on cytochrome F420.

Group	CYT F420 % (Increase with Cerium)		CYT F420 % (Decrease with Doxy+Cipro)	
	Mean	<u>+</u> SD	Mean	<u>+</u> SD
Normal	4.48	0.15	18.24	0.66
Schizo	23.24	2.01	58.72	7.08
Autism	21.68	1.90	57.93	9.64
	F value 306.749 P value < 0.001		F value 130.054 P value < 0.001	

Open Science

Table 2. Effect of cerium and antibiotics on digoxin.

Group	Digoxin (ng/ml) (Increase with Cerium)		Digoxin (ng/ml) (Decrease with Doxy+Cipro)		
	Mean	<u>+</u> SD	Mean	<u>+</u> SD	
Normal	0.11	0.00	0.054	0.003	
Schizo	0.55	0.06	0.219	0.043	
Autism	0.53	0.08	0.205	0.041	
		F value 135.116 P value < 0.001		F value 71.706 P value < 0.001	

Table 3. Effect of cerium and antibiotics on delta amino levulinic acid.

Group	ALA % (Increase with Cerium)		ALA % (Decrease with Doxy+Cipro)	
•	Mean	<u>+</u> SD	Mean	<u>+</u> SD
Normal	4.40	0.10	18.48	0.39
Schizo	22.52	1.90	66.39	4.20
Autism	23.20	1.57	66.65	4.26
	F value 372.716 P value < 0.001		F value 556.411 P value < 0.001	

Discussion

The study shows that the human endosymbiotic actinidic archaea catabolises cholesterol and uses it for its energy metabolism. The ring oxidation of cholesterol generates pyruvate which enters the GABA shunt pathway resulting in the formation of succinyl CoA and glycine used for porphyrin synthesis. The side chain oxidation of cholesterol results in steroid synthesis and the generation of the steroidal glycoside digoxin which serves as an endogenous regulator of the sodium potassium pump inhibiting it. The archaea are magnetotactic and contain the dipolar porphyrins and magnetite. Digoxin by inhibiting the sodium potassium ATPase generates a pumped phonon system involving dipolar porphyrins and magnetite. This generates a Frohlich model of Bose-Einstein condensate at normal temperature resulting in quantal perception. The quantal perception can result in perceiving low level of EMF from the environment.

This can generate conscious perception. The generation of porphyrins and digoxin in actinidic archaeal neurons was tested in disorders of consciousness schizophrenia and autism.

Consciousness involves quantal perception. The wave nature of the quantal state becomes particulate when it is observed by an observer. Consciousness involves the sum total of quantal perception by the brain resulting in the observer state. The observer and observed have an inter-related existence. Thus the observer and observed comes into existence due to the quantal perceptive state of the actinidic archaeal mirror neurons. The quantal state is mediated by archaeal digoxin and the dipolar magnetite and porphyrins. Consciousness involves working memory, perceptual synchronisation and focussed attention. Focussed attention depends on magnetotactic or quantal low level of EMF perception from the world and its objects. The perceptual synchronisation depends on the phenomena of cross activation of neuronal systems due to quantal phenomena. This can also generate the phenomena of synaesthesia and synkinesia. Working memory depends upon quantal perceptive mechanisms mediated by magnetotactic actinidic archaeal neurons in the brain generating reverboratory circuits. Thus actinidic archaeal induced mirror neurons in the prefrontal cortex and cerebellum are quantal perceptive neurons. The cerebellum is more concerned with intuition and extrasensory perception. The cerebellar neurons may be predominantly actinidic archaeal induced quantal perceptive mirror neurons. Quantal perceptive actinidic archaeal induced magnetotactic mirror neurons may be more dense in the cerebellum than prefrontal cortex and the cerebellar cortical circuits may play a major role in consciousness. Quantal perceptive mirror neurons fire in response to low level of EMF from the observed world. This quantal perceptive mirror neuron function in the cerebellum and to a lesser extent in the prefrontal cortex generates the observer as such and the observed world also by the act of

Open Science

observation. The world as such exists on the basis of magnetotactic archaeal mediated quantal mirror neuron function generating the observed-observer relation. Thus consciousness is a function of actinidic archaeal induced quantal perceptive mirror neurons in the cerebellum and to some extent in the prefrontal cortex

Schizophrenia and autism are both disorders of consciousness. The actinidic archaeal induced quantal perceptive mirror neuron function is hyperactive in both disorders. This results in dysfunction of consciousness due to increase in actinidic archaeal density, digoxin synthesis and porphyrin synthesis. Perception occurs predominantly by quantal perceptive mechanism in schizophrenia and autism. This also leads to increased creativity and intuition in schizophrenia and autism. Thus the observer and observed depends on actinidic archaeal induced quantal perceptive mirror neuron function. The world as such is an illusion created by the inter-relationship between the observed and observer mediated by quantal perceptive mirror neurons. The quantal perceptive image of the world and the observer can exist as multiple possibilities in multiple universes leading to the phenomena of eternal existence in multiverse universes.

References

- [1] Weaver TD, Hublin JJ. Neandertal Birth Canal Shape and the Evolution of Human Childbirth. Proc. Natl. Acad. Sci. USA 2009; 106:8151–8156.
- [2] Kurup RA, Kurup PA. Endosymbiotic Actinidic Archaeal Mediated Warburg Phenotype Mediates Human Disease State. Advances in Natural Science 2012; 5(1):81-84.
- [3] Morgan E. The Neanderthal theory of autism, Asperger and ADHD; 2007, www.rdos.net/eng/asperger.htm.
- [4] Graves P. New Models and Metaphors for the Neanderthal Debate. Current Anthropology 1991; 32(5): 513-541.

- [5] Sawyer GJ, Maley B. Neanderthal Reconstructed. The Anatomical Record Part B: The New Anatomist 2005; 283B(1): 23-31.
- [6] Bastir M, O'Higgins P, Rosas A. Facial Ontogeny in Neanderthals and Modern Humans. Proc. Biol. Sci. 2007; 274:1125–1132.
- [7] Neubauer S, Gunz P, Hublin JJ. Endocranial Shape Changes during Growth in Chimpanzees and Humans: A Morphometric Analysis of Unique and Shared Aspects. J. Hum. Evol. 2010; 59:555–566.
- [8] Courchesne E, Pierce K. Brain Overgrowth in Autism during a Critical Time in Development: Implications for Frontal Pyramidal Neuron and Interneuron Development and Connectivity. Int. J. Dev. Neurosci. 2005; 23:153–170.
- [9] Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, *et al.* A Draft Sequence of the Neandertal Genome. Science 2010; 328:710–722.
- [10] Mithen SJ. The Singing Neanderthals: The Origins of Music, Language, Mind and Body; 2005, ISBN 0-297-64317-7.
- [11] Bruner E, Manzi G, Arsuaga JL. Encephalization and Allometric Trajectories in the Genus Homo: Evidence from the Neandertal and Modern Lineages. Proc. Natl. Acad. Sci. USA 2003; 100:15335–15340.
- [12] Gooch S. The Dream Culture of the Neanderthals: Guardians of the Ancient Wisdom. Inner Traditions, Wildwood House, London; 2006.
- [13] Gooch S. The Neanderthal Legacy: Reawakening Our Genetic and Cultural Origins. Inner Traditions, Wildwood House, London; 2008.
- [14] Kurt én B. Den Svarta Tigern, ALBA Publishing, Stockholm, Sweden; 1978.
- [15] Spikins P. Autism, the Integrations of 'Difference' and the Origins of Modern Human Behaviour. Cambridge Archaeological Journal 2009; 19(2):179-201.
- [16] Eswaran V, Harpending H, Rogers AR. Genomics Refutes an Exclusively African Origin of Humans. Journal of Human Evolution 2005; 49(1):1-18.
- [17] Ramachandran V.S. The Reith lectures, BBC London. 2012.