Chapter 10

The Cassandra Hypothesis Actinidic Archaeal Symbiosis, Homo
Sapien Neanderthalisation, GenomicMetabolic-Neural Networks - Immune
Inflexibility and Neuropsychiatric
Pathology - Role of Dietary Fibre

Introduction

Dietary fibre deficiency leads to increased endosymbiotic as well as colonic archaeal growth. The climate change and global warming/ice age results in endosymbiotic actinidic archaeal growth in the human system and cholesterol catabolism resulting in endogenous digoxin synthesis. Digoxin can inhibit reverse transcriptase activity and RNA editing resulting in suppression of endogenous retroviral growth. This produces inhibition of HERV expression and jumping gene phenomena producing in adynamicity of the human genome. HERV related jumping genes are crucial in synaptic diversity, HLA expression and immunomodulation as well as metabolic diversity. Digoxin produces alteration in sodium-hydrogen exchange producing an acidic pH and acts like a growth factor producing stem cell transformation of adult cells. Stem cells have a distinct metabolism with increased glycolysis and suppression of PDH and mitochondrial function. The digoxin interference with RNA editing can lead to mutated RNA viruses and wide spread RNA viral epidemics. The digoxin interference with HERV expression and RNA editing and resultant inhibition of genomic, metabolic, neural and immune diversity produces schizophrenia, autism and epilepsy which are increasing at an epidemic rate in human population. The increased endosymbiotic archaeal growth detected in autism and matrilineal communities with increased incidence of autism and neanderthalic origin leads to the conclusion that digoxin acts as neanderthalic hormone. The increased endosymbiotic archaeal growth and resultant endogenous digoxin synthesis in relation to climate change and global warming results in neanderthalisation of homo sapiens and human disease resulting in homo sapien extinction. Homo sapiens tend to have low levels of endosymbiotic actinidic archaea and low digoxin synthesis. Homo sapiens have low incidence of schizophrenia and autism. The neanderthalisation of homo

sapiens consequent to endosymbiotic actinidic archaeal growth and digoxin synthesis produces human pathology and extinction. ¹⁻¹⁶

Materials and Methods

Endogenous digoxin levels and serum cytochrome F420 levels as a marker of archaeal growth were estimated in matrilineal communities, primary generalized epilepsy, schizophrenia and autism. 15 numbers were included in each group and each patient had an age and sex matched control. Endogenous digoxin was estimated by Elisa and cytochrome F420 estimated by spectrophotometry. The statistical analysis was done by ANOVA.

Results

F value

P value

Endogenous digoxin levels and cytochrome F420 levels were elevated in matrilineal neanderthalic communities, primary generalized epilepsy, schizophrenia and autism. Endogenous digoxin and cytochrome F420 levels were low in non-matrilineal homo sapien population.

Digoxin (ng/ml) Digoxin (ng/ml) (Increase with Cerium) (Decrease with Doxy+Cipro) Group $\pm SD$ $\pm SD$ Mean Mean Homo sapiens 0.11 0.00 0.054 0.003 Schizo 0.55 0.06 0.219 0.043 Autism 0.51 0.05 0.199 0.027 0.53 0.08 0.205 0.041 **Epilepsy** Neanderthals 0.05 0.033 0.51 0.213

71.706 < 0.001

135.116

< 0.001

Table 1. Digoxin levels.

Group	CYT F420 % (Increase with Cerium)		
	Mean	±SD	
Homo sapiens	4.48	0.15	
Schizo	23.24	2.01	
Autism	23.46	1.87	
Epilepsy	21.68	1.90	
Neanderthals	22.70	1.87	
F value	306.749		
P value	< 0.001		

Table 2. Cytochrome F420 levels.

Discussion

Dietary Fibre Deficiency, Endosymbiotic Archaea, Brain Neanderthalisation and Neuropsychiatric Disorders

Dietary fibre deficiency leads to increased endosymbiotic as well as colonic archaeal growth. The increased endosymbiotic archaeal growth detected in autism and matrilineal communities with increased incidence of autism and neanderthalic origin leads to the conclusion that digoxin acts as neanderthalic hormone. The increased endosymbiotic archaeal growth and resultant endogenous digoxin synthesis in relation to climate change and global warming results in neanderthalisation of homo sapiens and human disease resulting in homo sapien extinction. Homo sapiens tend to have low levels of endosymbiotic actinidic archaea and low digoxin synthesis. Homo sapiens have low incidence of schizophrenia, autism and epilepsy. The neanderthalisation of homo sapiens consequent to endosymbiotic actinidic archaeal growth and digoxin synthesis produces human pathology and extinction.

Dietary Fibre Deficiency, Endosymbiotic Archaea, Genomic Change, Mind Change and Neuropsychiatric Disorders

The climate change and global warming/ice age results in endosymbiotic actinidic archaeal growth in the human system and cholesterol catabolism resulting in endogenous digoxin synthesis. Cholesterol catabolism can produce endogenous digoxin synthesis. Endogenous digoxin can modulate RNA metabolism. Digoxin can inhibit reverse transcriptase activity and RNA editing resulting in suppression of endogenous retroviral growth. High endogenous digoxin levels can produce retroviral resistance. This produces inhibition of HERV expression and jumping gene phenomena producing in adynamicity of the human genome. HERV can act as jumping genes producing genomic dynamicity. HERV related jumping genes are crucial in synaptic diversity, HLA expression and immunomodulation as well as metabolic diversity. The digoxin interference with HERV expression and RNA editing and resultant inhibition of genomic, metabolic, neural and immune diversity produces epilepsy, schizophrenia and autism which are increasing at an epidemic rate in human population. The HERV jumping genes produces changes in the genome resulting in synaptic diversity and neural network specialisation. The absence of HERV expression results in prefrontal cortex atrophy and cerebellar dominance. The cerebellum is supposed to have cognitive functions. Cerebellar dysfunction results in the cerebellar cognitive affective syndrome. Cerebellar dominance results in speech dysfunction and development of music and dance as a form of expression. Cerebellum in concerned with intuition and extra sensory perception. Cerebellum also mediates hypnotic trances and spiritual experiences. The cerebellum is concerned with impulsive behaviour and the fear, flight, fight responses. Cerebellum is also the site of intuitive creativity. Cerebellum modulates our interaction with the internet. The resulting cerebellar dominance results in schizophrenia, autism, ADHD, addiction, criminality, autistic savant phenomena, introverted behaviour and

alternate sexuality. It results in an epidemic frontal lobe syndrome and cerebellar cognitive affective syndrome. The inhibition of HERV expression results in decreased diversity of HLA gene expression and autoimmunity contributing to epilepsy, schizophrenia and autism.

Dietary Fibre Deficiency, Endosymbiotic Archaea, Stem Cell Transformation, Zombie Syndrome and Neuropsychiatric Disorders

Digoxin produces alteration in sodium-hydrogen exchange producing an acidic pH and acts like a growth factor producing stem cell transformation of adult cells. Stem cells have a distinct metabolism with increased glycolysis and suppression of PDH and mitochondrial function. The stem cell metabolonomics results in metabolic syndrome X and insulin resistance with increased incidence of epilepsy, schizophrenia and autism. Digoxin converts adult cells to the stem cells. The adult cells envelope is of archaeal origin. This results in regression to endosymbiotic archaeal state. The human body is reduced to an archaeal colony network or zombie. Increased digoxin can increase cellular calcium producing mitochondrial cell death by activating the caspase cascade. The conversion of adult cells to archaeal stem cells by endogenous digoxin can alter cellular metabolonomics and produce mitochondrial dysfunction resulting in epilepsy, schizophrenia and autism.

Dietary Fibre Deficiency, Endosymbiotic Archaea, Viral Speciation, New RNA Viral Epidemics and Cassandra Syndrome - Relation to Neuropsychiatric Disorders

Global warming results in increased carbon dioxide the atmosphere, acidic pH and archaeal growth. Archaea are extremophiles. The increased endosymbiotic actinidic archaeal growth the human system as well as the conversion of adult cells to stem cells/archaeal form of cells results in neanderthalisation of homo sapiens. This results in increased incidence of

systemic diseases in homo sapiens and their extinction. The digoxin interference with RNA editing can lead to mutated RNA viruses and wide spread RNA viral epidemics. There is increased incidence of RNA viral epidemics in relation to global warming. H_1N_5 , borna and herpes virus epidemics can lead to epilepsy, autism and schizophrenia. The RNA viral epidemics can result in homo sapien extinction. The increased actinidic archaeal growth in the ocean beds releases methane which shifts the ocean continental crusts resulting in earthquakes and Tsunamis. This can lead to widespread catastrophies and extinction of homo sapien human population as such. This phenomenon is inevitable as the homo sapien civilisation expands and technology grows. The increased production of green house gases as a part of civilisational growth leads to global warming, actinidic archaeal growth, neanderthalisation of humans and archaeal related oceanic Tsunamis and earthquakes resulting in catastrophic human extinction. This can be described as the Cassandra hypothesis.

References

- [1] Weaver TD, Hublin JJ. Neandertal Birth Canal Shape and the Evolution of Human Childbirth. *Proc. Natl. Acad. Sci. USA* 2009; 106: 8151-8156.
- [2] Kurup RA, Kurup PA. Endosymbiotic Actinidic Archaeal Mediated Warburg Phenotype Mediates Human Disease State. *Advances in Natural Science* 2012; 5(1): 81-84.
- [3] Morgan E. The Neanderthal theory of autism, Asperger and ADHD; 2007, www.rdos.net/eng/asperger.htm.
- [4] Graves P. New Models and Metaphors for the Neanderthal Debate. *Current Anthropology* 1991; 32(5): 513-541.
- [5] Sawyer GJ, Maley B. Neanderthal Reconstructed. *The Anatomical Record Part B: The New Anatomist* 2005; 283B(1): 23-31.
- [6] Bastir M, O'Higgins P, Rosas A. Facial Ontogeny in Neanderthals and Modern Humans. *Proc. Biol. Sci.* 2007; 274: 1125-1132.

- 100
- [7] Neubauer S, Gunz P, Hublin JJ. Endocranial Shape Changes during Growth in Chimpanzees and Humans: A Morphometric Analysis of Unique and Shared Aspects. *J. Hum. Evol.* 2010; 59: 555-566.
- [8] Courchesne E, Pierce K. Brain Overgrowth in Autism during a Critical Time in Development: Implications for Frontal Pyramidal Neuron and Interneuron Development and Connectivity. *Int. J. Dev. Neurosci.* 2005; 23: 153-170.
- [9] Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, *et al.* A Draft Sequence of the Neandertal Genome. *Science* 2010; 328: 710-722.
- [10] Mithen SJ. The Singing Neanderthals: The Origins of Music, Language, Mind and Body; 2005, ISBN 0-297-64317-7.
- [11] Bruner E, Manzi G, Arsuaga JL. Encephalization and Allometric Trajectories in the Genus Homo: Evidence from the Neandertal and Modern Lineages. *Proc. Natl. Acad. Sci. USA* 2003; 100: 15335-15340.
- [12] Gooch S. The Dream Culture of the Neanderthals: Guardians of the Ancient Wisdom. Inner Traditions, Wildwood House, London; 2006.
- [13] Gooch S. The Neanderthal Legacy: Reawakening Our Genetic and Cultural Origins. Inner Traditions, Wildwood House, London; 2008.
- [14] Kurt én B. Den Svarta Tigern, ALBA Publishing, Stockholm, Sweden; 1978.
- [15] Spikins P. Autism, the Integrations of 'Difference' and the Origins of Modern Human Behaviour. *Cambridge Archaeological Journal* 2009; 19(2): 179-201.
- [16] Eswaran V, Harpending H, Rogers AR. Genomics Refutes an Exclusively African Origin of Humans. *Journal of Human Evolution* 2005; 49(1): 1-18.

