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2.1  Basic Principle of Monte-Carlo Methods 

The appearance of statistical simulation (Monte Carlo) methods in various fields 

of applied mathematics is usually caused by the appearance of qualitatively new 

practical problems. The examples include the creation of nuclear weapons, space 

development, the study of atmospheric optics phenomena, and the study of 

physicochemical and turbulence processes. One good definition is as follows: The 

Monte Carlo methods are the methods designed for solving mathematical problems 

(e.g., systems of algebraic, differential, or integral equations) based on the direct 

statistical simulation of physical, chemical, biological, economic, social, and other 

processes using the generation and transformation of random variables. 

The first paper devoted to the Monte Carlo method was published as early as in 

1873 [22]. It described the experimental determination of  by a realization of 

the stochastic process of tossing a needle on a sheet of ruled paper. A striking 

example is the use of von Neumann’s idea to simulate the neutron trajectories in 

the Los Alamos laboratory in 1940. Although the Monte Carlo methods require a 

large amount of computations, the absence of computers at that time did not 

discourage the researchers. The name of these methods comes from the capital of 

the Principality of Monaco, which is famous for its Casino; indeed, the roulettes 

used in the casino are perfect tools for generating random numbers. The first 

paper [23] that systematically expanded this method was published in 1949. In 

that paper, the Monte Carlo method was used to solve linear integral equations. It 

could easily be guessed that these equations were related to the problem of the 

passage of neutrons through matter. In Russia, studies concerning the Monte 

Carlo methods appeared after the Geneva International Conference on the 

Peaceful Uses of Atomic Energy. One of the first Russian studies is [24]. 
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The revelation of the methods of statistical modeling (Monte-Carlo) in various 

areas of the applied mathematics is connected as a rule with the necessity of 

solution of the qualitatively new problems, arising from the needs of practice. 

Such a situation appeared by the creation of the atomic weapon, at the initial stage 

of a mastering of space, by the investigation of the phenomena of atmospheric 

optics, the physical chemistry, and the modeling of turbulence flow (John von 

Neumann, Nicholas Constantine Metropolis, Stanislaw Marcin Ulam,                

Vasilii Sergeevich Vladimirov, Ilya Meerovitch Sobol, Gury Ivanovich Marchuk, 

Sergey Mikhailovich Ermakov, Gennady Alekseyevich Mikhailov,         

John Kenneth Haviland, Graeme A. Bird, Iain D. Boyd,                

Mikhail Naumovich Kogan, Vladimir Alexandrovich Perepukhov,        

Oleg Mikhaylovich Beloserkovskii, Yuri Ivanovich Khlopkov,            

Vitaliy Yevgenyevich Yanitskii, Mikhail Samuilovich Ivanov,                    

Aleksandr Ivanovich Eropheev and et al.). 

   

Metropolis N. C. Ulam S. M. Vladimirov V. S. 
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Beloserkovskii O. M. Ermakov S. M. Mikhailov G. A. 

   

Marchuk G. I. Kogan M. N. Perepukhov V. A. 

 

Bird G. A. and Khlopkov Yu. I. 
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The general scheme of the Monte Carlo method is based on the central limit 

theorem, which states that random variable 

1

N

i

i

Y X


  

is equal to the sum of a large number of random variables with the same 

expectation m and the same variance σ
2
 has the normal distribution with the 

expectation N and the variance N σ
2
. Assume that we want to solve an equation or 

find the result of a certain process I. If we can construct the random variable ξ 

with the probability density p(x) such that the expectation of this variable is equal 

to the unknown solution M(ξ) = I, then we obtain a simple method for estimating 

the solution and its error [25]: 

1

1 3σ
M(ξ) ξ

N

i

i

I
N N

    

This implies the following general properties of the Monte Carlo methods: 

1. The absolute convergence to the solution with the rate 1/N. 

2. An unfavorable dependence of the error ε on the number of trials:        

ε ≈ 1/ N  (to reduce the error by an order of magnitude, the number of 

trials must by increased by two orders of magnitude). 

3. The main method of reducing the error is the variance reduction; in other 

words, this is a good choice of the probability density p(x) of the random 

variable ξ in accordance with the physical and mathematical formulation of 

the problem. 

4. The error is independent of the dimensionality of the problem. 
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5. A simple structure of the computation algorithm (the computations needed 

to realize a proper random variable are repeated N times). 

6. The structure of the random variable ξ can be generally based on a physical 

model of the process that does not require a formulation of the controlling 

equations as in regular methods; this fact is increasingly important for 

modern problems. 

We illustrate the main features of the Monte Carlo methods and the conditions 

under which these methods outperform the conventional finite difference methods 

or are inferior to them using the following example. Suppose that we want to 

evaluate the definite integral of a continuous function over the interval [a, b]: 

To evaluate this integral using the Monte Carlo method, we construct a random 

variable with the probability density p(x) such that its expectation 

M( ) ( )p x dx





 ξ ξ  

is equal to I. Now, if we set  = f(x)/p(x) within the integration limits, then we 

have, by the central limit theorem, 

1

1 3σN

i

i

I
N N

 ξ  

On the one hand, the evaluation of I by formula described above can be 

interpreted as the solution of a mathematically stated problem; on the other hand, 

it can be interpreted as a direct simulation of the area under the plot of f(x). The 

evaluation of the one-dimensional integral I1 by the Monte Carlo method 

corresponds to the computation of I using the rectangular rule with the step    

Δx ≈ 1/ N  and an error O(Δx). If f(x) is sufficiently “good”, the integral I1 in 
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the one-dimensional case can be calculated accurate to O(Δx
2
) using the trapezoid 

rule, accurate to O(Δx
3
) using the parabolic rule, and to any desired accuracy 

without a considerable increase in the computational effort. In the 

multidimensional case, the difficulties in using schemes of a high order of 

accuracy increase; for this reason, they are rarely used for the calculation of 

n-dimensional integrals In for n ≥ 3. 

Let us compare the efficiency of the regular and statistical methods for the 

problem described above. Let n be the dimensionality of the problem, Y be the 

number of nodes on an axis, R = Y 
n
 be the total number of nodes for the regular 

methods, q be the order of accuracy, N be the number of statistical trials, and ν be 

the number of operations needed to process one node (to perform one statistical 

trial). Then, L = Y 
–q

 is the error of the regular methods, K = N 
–1/2

 is the error of the 

statistical methods, /(ε) ε n q

LL vR v    is the number of operations when the problem 

is solved by a regular method, and -2(ε) εKK vN v   is the number of operations 

when the problem is solved by the Monte Carlo method. Then, in the case of an 

equal number of operations needed to obtain a solution with the same accuracy 

using each of the methods, we have n = 2q. Therefore, for n  3 and q = 1 

(first-order schemes), the Monte Carlo methods are preferable. For other classes of 

problems, the relation between the efficiency of the methods can be different. 

2.2  The Monte Carlo Methods in Computational 

Aerodynamics  

The Boltzmann integro-differential kinetic equation for the single-particle 

distribution density is 
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 1 1 1( ) ( )
f

f f f f f bdbd d J f
t





     ξ g ξ  (2.1) 

here, f = f(t, x, y, z, x, y, z) is the distribution density. f, f1, f, f1, correspond to 

the molecules with the velocities , 1 and ', 1', before and after the collision, g 

is the relative velocity of the molecules in binary collisions 
1| | | |  g g ξ ξ , 

and b and ε are the impact parameter and the azimuth angle for the collision. 

The complex nonlinear structure of the collision integral and the large number 

of variables (seven in the general case) present severe difficulties for the analysis 

including the numerical analysis. The high dimension, the probabilistic nature of 

the kinetic processes, and complex molecular interaction models are the natural 

prerequisites for the application of the Monte Carlo methods. Historically, the 

numerical statistical methods in rarefied gas dynamics developed in three 

directions: 

1. The use of the Monte Carlo methods to evaluate the collision integrals in 

the regular finite difference schemes for solving the kinetic equations. 

2. The direct statistical simulation of physical phenomena, which is 

subdivided into two approaches: the simulation of trajectories of test 

particles by the Haviland method [26] and the simulation of the evolution 

of the ensemble of particles by the Bird method [27]. 

3. The construction of a stochastic process using the Ulam–Neumann 

procedure [28] corresponding to the solution of the kinetic equation. 

The hierarchy of levels of the description of large molecular systems includes a 

wide range of approaches, and various descriptions of the molecular dynamics at 
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different levels can be used for constructing efficient statistical simulation 

methods. 

The most detailed level of description is a dynamical system. To describe a 

system consisting of a large number N of particles (a molecular gas is a system of 

this kind), one must specify the initial coordinates and velocity of each molecule 

rj, xj and the evolution equations of this system 

 

2

2

N
j

ij

i j

d
m R

dt 


r

 (2.2) 

The solution of such a system is an unrealizable (cannot be solved in practice) 

problem even for a very rarefied gas. Indeed, at a height of 400 km (the most 

popular satellite orbits), one cubic centimeter contains 10
9
 molecules. For this 

reason, a less detailed statistical description is used. 

 

Figure 2.1  Dynamical system of molecules. 

Following the Gibbs formalism, rather than consider a single system, an 

ensemble of systems in the 6N-dimensional Γ-space distributed according to the 

N-particle distribution function  1 1, ,..., , ,...,N N Nf t fr r ξ ξ  is considered. This 
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function is interpreted as the probability of finding the system in the 

neighborhood dr1…drNd1…dN of the point r1,…, rN, 1, …, N at the moment t: 

1 1.. ...N N NdW f d d d d r r ξ ξ  

Such an ensemble is described by the Liouville equation 

 
1 1

0
N N N

ijN N N
i

i i j ii i

Ff f f

t m  

  
  

  
 ξ

r ξ
 (2.3) 

From now on, the Liouville equation and all the subsequent kinetic equations 

following from the Bogolyubov chain including the last Boltzmann equation 

have a probabilistic nature. Although Eq. (2.3) is simpler than system (2.2), it 

takes into account the collisions of N molecules and is very difficult to analyze. A 

less detailed description is achieved by roughening the description using 

s-particle distribution function 1 1... ...s N s N s Nf f d d d d   r r ξ ξ , which determine 

the probability to simultaneously find s particles independently of the state of the 

remaining (N–s) particles. 

Following Bogolyubov’s ideas, we obtain the chain of linked equations 

   1 1 1

1 1 1 1

s s s s
ij ijs s s

i s s s

i i j ii i i

F Ff f f
N s f d d

t m m
  

   

   
    

   
   ξ r ξ

r ξ ξ
 (2.4) 

up to the single-particle distribution function F1 = f(t, r, ) corresponding to the 

Boltzmann gas, which only takes into account the binary collisions: 

 
2 2 2 2

2 2 2
2 1 2 1 2 1

1 1 1 1

2
ij ij

i

i i j ii i i

F Ff f f
N f d d

t m m
  

   

   
    

   
   ξ r ξ

r ξ ξ
 

For triple collisions: 
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 
3 3 3 3

3 3 3
3 1 2 1 3 1

1 1 1 1

3
ij ij

i

i i j ii i i

F Ff f f
N f d d

t m m
  

   

   
    

   
   ξ r ξ

r ξ ξ
 

Following Boltzmann, we assume that the molecules are spherically 

symmetric and accept the molecular chaos hypothesis                    

F2(t, r1, r2, 1, 2) = F1(t, r1, 1) F1(t, r2, 2) to obtain Eq. (2.1). 

It is very interesting to consider a particular case of Liouville’s equation (2.3) 

and of Bogolyubov’s chain (2.4) that describe a spatially homogeneous gas 

consisting of a bounded number of particles and corresponding to two-particle 

collisions; in this case, on the final link of the chain, we obtain the Kac master 

equation [29] 

  1 1
2 1 2 2 1 2 12 12 2

( , ) 1
( , , ) ( , , ) σ

t N
t t d d

t N


 

 
  

 
ξ

ξ ξ ξ ξ g ξ  (2.5) 

where 1 and 2 are the one- and two-particle distribution functions. In contrast to 

the Boltzmann equation, Eq. (2.5) is linear, which will be used in the development 

and justification of efficient numerical direct statistical simulation schemes. 

Returning to the Boltzmann equation, we easily obtain all the macroscopic 

parameters from the definition of the function f. For example, the number of 

molecules n in a unit volume of the gas is  

( , ) ( , , )n t f t d r r ξ ξ  

The mean velocity of the molecules, the strain tensor, and the energy flux are 

determined by the relations  

1
( , ) ( , , )t f t d

n
 v r ξ r ξ ξ , 
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( , , )ij i jP m c c f t d  r ξ ξ , 

2 ( , , )
2

i i

m
q c c f t d  r ξ ξ , 

where c =  – V is the thermal velocity of the molecules. The mean energy of the 

heat motion of molecules is usually described in terms of the temperature 

23 1
( , , )

2 2

mc
kT f t d

n
  r ξ ξ  

Applying the Chapman–Enskog procedure to the Boltzmann equation, we 

obtain the hydrodynamical level of description. This sequentially yields the Euler, 

Navier–Stokes, Barnett, etc., equations: 

ρρ
0i

i

V

t x


 

 
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ρ

ij

j i

j j

P
V V

t x x

   
   

    

 

3
ρ
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j ij
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R V T P

t x x x

    
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 
 
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 
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.i

i

T
q

x





    

ρp RT  

The expressions for the components of the thermal velocity can be obtained by 

simulating the normally distributed random variable 
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2
ln α cos(2πα )B

x

k T

m
 ξ  

1 2

2
ln α sin(2πα )B

y

k T

m
 ξ  

3 4

2
ln α cos(2πα )B

z

k T

m
 ξ  

here, k is independent random numbers that are uniformly distributed on the 

interval (0, 1). In order to reproduce the mean velocity more accurately, it is 

reasonable to use the following symmetrized algorithm: the thermal velocities of 

the particles with the odd indexes are calculated, and the thermal velocities of the 

particles with the even indexes are set equal to the velocities of the corresponding 

odd particles with the opposite sign. 

The complex nonlinear structure of the collision integral and the large number 

of variables (seven in the general case) present severe difficulties for the analysis 

including numerical analysis. The high dimension, the probabilistic nature of the 

kinetic processes, and complex molecular interaction models are the natural 

prerequisites for the application of the Monte Carlo methods [25, 30]. 

Let’s see the kinetic equations for triple molecular collisions. The statistical 

independence of particles before collision, solution of equation is [31] 

3 1 2 3 1 0 10 1 0 20 1 0 30( ,τ ,τ ,τ ) ( ,τ ) ( ,τ ) ( ,τ )f t f t f t f t . 

where a0 = a0 (t, t0, 1, 2, 3)  coordinate and impulse values which particles at 

the moment t0 for that at the time t get into given points 1, 2, 3 of the phase space. 

Now, let’s move from f1 to f = Nf1, and find kinetic equation in the form of 
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f St f St f
t


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
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•  12
2 1 12 1 2 2( , τ ) ( , τ ) ( , τ ) τ

ξ

F
St f t S f t f t d

m

 


  - Integral for pair collisions, 

•  12
3 1 123 1 2 3 2 3

1
( , τ ) ( , τ ) ( , τ ) ( , τ ) τ τ

ξ

F
St f t R f t f t f t d d

N m




  - Integral for 

triple collision, 

here S12 and R123 – some operators. Let’s consider a few of collision processes 

taking into account integral. First of all, the operator R123 is zero, if at least one of 

the particles does not interact with the others. The process R123  0 is not only the 

triple collisions, but also combination of several pair of molecules. We consider 

several types of collisions (Figure 2.2 (a, b, c)) [31]. 

 

 
 

(a) (b) (c) 

Figure 2.2  The basic trajectories of triple collisions of molecules. 
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Figure 2.3 show the distribution of the velocity of the molecules before and 

after collisions (total number of particles N = 910
5
). From the graphs, it is clear 

that the velocity distribution of the molecules before and after collision is the 

same. Elastic collision is defined as collision in which there is no exchange 

between the translational and internal energies. Triple collisions will occur, after 

colliding as pair molecular collisions. Although the Lennard-Jones potential and 

is used in simulations of liquid and solids, strictly speaking, the molecular 

interaction at high densities is no longer a pair collision [32]. 

 

Figure 2.3  Velocity distribution function before and after collisions. 

In condensed mediums, to consider the collisions of molecules, the 

environment effects on the molecules. So, the solid argon contribution to the 

energy of the triple collisions can reach 10% [33]. However, taking into account 

the triple collisions of molecules computationally too expensive to simulate in 

rarefied gas dynamics approach [34-36]. 
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2.3  Method for Surface Description of the Complex 

Vehicle Design 

One of the basic technology questions of aerodynamic characteristics 

calculation of the arbitrary apparatus shape is the rational choice of way to 

describe of surface geometry. Methods for describing of complex surfaces can be 

divided into two main groups: mathematical approximation of a surface and 

space distribution of large number surface points which restored the system of 

surface element. The main disadvantage of the first group of methods are usually 

related to approximation of complex mathematical problems, essentially 

nonlinear surfaces on small number of control points, and the second - difficulty 

preparation of initial data. In the given work, these both methods are used: due to 

comparative simplicity and universality of the task of control points, and finally 

restore surface on the control points, the modeled body is divided into number of 

specific parts (wing, fore part, bottom-most part of fuselage, etc.), for each of 

those is conducted square-law interpolation on control points [37]. 

For each part introduces the axis (x, y', z'), which are the axes of the symmetric 

coordinate system. Axis divided into a finite number of characteristic points 

defined by the parameters xi, yi, zi. These points in a cylindrical coordinate system 

are given by section: j, Rij; yi, Ryij; zi, Rzij. Depending on the shape of the cross 

section, it can be defined as a discrete and in analytical form. 

For qualification the surface of the passing points provides an interpolation 

procedure. Intermediate points on the axes and the angles are according to the 

formulas of the linear interpolation, 

1 1

2 2

1

2
i i ix x x 

 
  

 
, 
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2 2

1

2
j j j   

 
  

 
 

Radius value by use of Lagrange polynomial interpolation is interpolated twice 

– by  и x: 

3

1 1

( ) ( )
j

i

i j i j

a a
R a R a

a a 





   

where аi,, j - correspond to the values of  и x in the interpolation points.  

Thus, with the required accuracy are given by the initial points on the surface. 

The question remains, how is spanned by the available core surface of the 

streamlined apparatus. As already noted, the aim is suitable linear approximation, 

so in the capacity of basic will consider the linear element, correspond triangle, 

which was built by nearest three points. Vertices of triangles in rectangular 

coordinates for the different parts are defined by formula. 

For fuselage 
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For wing 
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Where (x0, y0, z0) - initial coordinates of the axis of the wing z', z – angle of 

slope of axis of the wing to the surface у = 0, zi - angle of slope of the axis of the 
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wing to the axis z, zi - the angle of slope defined by sections on the axis z'. For full 

definition of elements it is necessary to determine its orientation and surface area. 

Let a = r2  r1, b = r3 – r1, generating elements of the vector. Then element of 

the area and normal to the surface 

1
S= (a b)

2
 , 

   n= / a b a b  

An estimate error for approximation by linear elements in the process for free 

molecular flow regime gives good results. So, for the approximation in calculation 

the resistance of cone accurate within 5% (average error of statistical methods) 

should be about 10 elements, and for approximation of the sphere – 100, single 

application of the interpolation procedure reduces the error by an order [37]. 

2.4  The Mathematical Description of Gas-Surface 

Interaction Models 

The collision process between gas molecule and solid surface is termed 

gas-surface interaction. In kinetic theory, the gas-surface interaction forms a 

boundary condition between the gas molecules and solid surface. For scales 

relevant to kinetic theory, the gas-surface interactions are usually modeled with 

parameters having macroscopic character, in order to have manageable and 

efficient calculations. Although various gas-surface interaction models have been 

proposed over the past century and a half, the validity of these models remains 

tenuous for rarefied gas flow condition. In particularly, intended to analyze 

gas-surface interaction models on aerodynamic effects (Maxwell model, 

Cercignani-Lampis-Lord (CLL) model and Lennard-Jones potential). 
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The majority of gas dynamic problems include the interaction of gas particles 

with the body surface. Diffusion reflection with complete momentum and energy 

accommodation is most frequently used in DSMC method. In a diffuse reflection, 

the molecules are reflected equally in all directions usually with a complete 

thermal accommodation. The problem of gas-surface interaction takes an 

essential place in aerodynamics. The role of laws of molecular interaction with 

surfaces is shown more strongly, than more gas is rarefied [32]. Boundary 

conditions for Boltzmann equation are the conditions relating the distribution 

function of incident and reflected molecules. 

2.4.1  Maxwell Model 

The most popular gas-surface interaction model for kinetic theory is specular 

and diffuse reflection model developed by Maxwell (1879). This model is based 

on the assumption that the portion (1 – ) of molecules reflected specularly from 

the surface, and the rest part  of the molecule diffusely. The density of 

distribution of reflected molecules is set as follows: 

   3/ 2 3/ 2 2

τ τ( , ) (1 σ ) , 2( ) σ π exp , ( ) 0r w r i w r r r r r r rf f n h h       x ξ x ξ ξ n n ξ ξ n
 

and the scattering kernel has form 

   
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2
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h
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r

r
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Here, r –velocity vector of the reflected molecules, δ – Dirac delta-function, n 

–outward unit normal to the surface xw, hr - most probable velocity of molecules 

at temperature Tw. Indexes i and r denote the quantities for the incident and 

reflected fluxes, and an index w - the value corresponding to diffuse reflection at 
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temperature of wall Tw. Parameter 0    1 in Maxwell model defines 

accommodation coefficient for the tangential momentum. 

τ τ
τ

τ

σ i r

i

p p

p




 

For complete specular reflection  = 0, for complete diffuse reflections  = 1. 

Popularity of Maxwell model is due to its simplicity and with the fact that it 

satisfies the principle of detailed balance. Maxwell’s model proved suitable for 

low speed experiments and low rarefaction environments. 

The velocity vector components at diffuse reflection are modelled in local 

spherical coordinate system which axis is directed along outward unit normal to 

the surface, by means of expressions [30] 

1/ 2

1 2| | ln(α α )r rh ξ
, 3cosθ α

, 4φ 2πα  

Where 1, 2, 3, 4 - the independent random numbers uniformly distributed 

between 0 and 1. ,  - polar and azimuthal angles. The Accommodation 

coefficient of kinetic energy is defined in terms of incident and reflected fluxes as 

follows 

2 2

2 1
σ i r i r

E

i w i w

E E

E E h

 
 

 

ξ ξ

ξ
 

Here Ew - energy which would be carried out the reflected molecules if gas is in 

equilibrium with wall, i.e., when Tr = Tw. Expression for velocity of the reflected 

molecule corresponding to not full accommodation of kinetic energy looks like 

1/ 2

1 2| ξ | ln(α α )r rkh  , 
2(1 σ ) σE i r Ek h  ξ  



Notable Achievements in Aviation and Aerospace Technology 57 

 

 

2.4.2  Cercignani-Lampis-Lord Model 

In work [38] is proposed phenomenological model of Cercignani-Lampis (CL) 

which also satisfies to principle of reciprocity and is reported improvement of the 

Maxwell models [32]. The model is based on introduction of two parameters 

which represent accommodation coefficient of kinetic energy connected with 

coefficients of normal momentum n = En, and tangential momentum 

accommodation , respectively. 

Model CL well corresponds to results of laboratory researches with high-speed 

molecular beams. Although comparison is limited by laboratory conditions, CL 

model is theoretically justify and relatively simple. Later, there were 

modification of scattering kernel of CL model; however, they give slight 

improvement at comparison with laboratory experiments. Generally the 

interaction model has some arbitrary physical parameters that allow to achieve 

the reasonable agreement with results of laboratory researches in range of 

conditions. In this sense, original model CL is enough physical and suitable for 

theoretical research. The universal model should use the scattering kernel 

received on the basis of physical experiment in a wide range of Knudsen numbers 

and velocity of stream. 

In CL model, the diffusion kernel of velocity for surface normal has the 

following form 

2 2

0

ξ ξ2ξ ξ (1 σ )ξ
(ξ ξ ) 2 1 σ exp

σ σ σ

ni nrnr nr n ni

ni nr n

n n n

K I
    
     
     

 

2π

0
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2π
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Here I0 –first type Bessel function, ni, nr – molecular velocities of surface 

normal for the incident and reflected molecules, rating as 1/ 2

wh . A scattering 

kernel is written as follow 

 
2

τ τ τ

τ τ

τ ττ τ

ξ (1 σ )ξ1
(ξ ξ ) exp

σ (2 σ )πσ (2 σ )

r i

i rK

  
   
 
 

 

Here i, r – molecular velocities of tangent to surface for the incident and 

reflected molecules, rating as 1/ 2

wh . 

 

Figure 2.4  Comparison of the experimental data of [39] with the  

calculated results by using the kernel [38]. 

(n = 0.3,  = 0.1,  = 15, 22.5, 30 and 45) 

Twenty years after creation CL model have been published the algorithm of its 

realization based on some transformation with the limits of direct statistic 

simulation method [40]. The model in this form is called as 

Cercignani-Lampis-Lord model (CLL). Usage of CL model transformation 

expands to account for rotational energy exchange between gas and surface. Then, 

updating CLL model in the form of [41] is to account for vibrational energy 
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exchange and extend rang of states of the scatted molecule. CLL model is widely 

recognized examples of its application are presented in multiple works [42-55]. 

In order to simulate the partial surface accommodation, the CLL model was 

implemented into this DSMC calculation [56]. The CLL model is derived 

assuming momentum components. The two adjustable parameters appearing in 

the CLL model are the normal component of translational energy αn and the 

tangential component of momentum στ. However, in the implementation of the 

CLL model in the DSMC method, Bird has shown that it is equivalent to specify 

the normal αn and tangential ατ components of translational energy, since 

ατ=στ(2−στ), and thus στ<ατ, assuming that στ lies between 0 and 1. 

2.4.3  Nocilla Model 

The model (Nocilla, 1963) [57] was for the first time applied to the calculation 

of aerodynamic coefficients of drag and lift for simple figures in a free-molecular 

flow. The model is more general as compared to the Maxwell model; but at the 

same time, it is also simple in application. We can see more about explanation 

about Nocilla model in the work [58-63]. 

 

Figure 2.5  Comparison of the experimental data [32]. 
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The distribution functions of the particles reflected from the surface are 

presented in the following form: 

      
3/ 2
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here , nr are the velocity and density of reflected molecules, and Snr, Sr are the 

velocity vector components of incident molecules. Parameters of the function fr 

are selected depending on available experimental data and the law of mass 

conservation. 
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here,  – angle between velocity vector of incident and internal normal to the 

surface, Tr – wall temperature, qmr, qmi – incident and reflected flux, which are 

used by normal distribution function fr in Monte-Carlo method. The parameters 

an, bn, a and b depends on material of surface which obtained from experimental 

work. The Nocilla model is use in the complex program “SMILE” [64] and 

“MONACO” for spacecraft aerodynamics investigation [65]. 

2.4.4  Lennard-Jones Potential 

Generally speaking, at molecular level it is necessary to consider interaction 

potentials, using electron-nuclear representations. Empirical potential 

dependences reflect the fact, that attractive forces at large distance and repulsive 

forces at short distances. This feature is reflected most simply with 

Lennard-Jones potential. The sixth power is decrease of potential simulate 

electro-statistical dipole-dipole and dispersive attraction. The twelfth-power 

repulsive potential is decrease from reasons of mathematical convenience. At the 

same time, it models rigid enough repulsion. 

12 6
σ σ

U( ) 4εr
r r

    
     

     
 

when r =  the potential is equal to zero.  

The value  characterizes depth of a potential hole of the one electron volt. This 

feature is most simply reflects Lennard-Jones potential. It’s shown that this model 

qualitatively correctly described the behavior of aerodynamic characteristics [32]. 
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Figure 2.6  Lennard-Jones potential. 

2.5  Modelling of the Aerodynamic Characteristics of 

Aerospace Vehicles in Free Molecular Flow 

The calculation has been carried out through the method described in the 

previous section within the range of angles of attack  from  90 deg to + 90 deg 

with a step of 5 deg. The parameters of the problem are the following: ratio of heat 

capacities  = 1.4; temperature factor tw = Tw/T0 = 0.04; velocity ratio M = 20, 

energy accommodation coefficient n = 0.5, 0.9, 1, momentum accommodation 

coefficient  = 0.5, 0.9, 1. The coefficients of drag force Cx, lift force Cy and 

pitching moment mz which are calculated according to equations as below 

21
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2

i
i

ref
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 , 
2

, , ,
1

ρ
2

i
Z

ref ref

M
m i x y z

V L S 

   

Lref, Sref – references length and surface; Fi, Mi – resultant force acting on the 

vehicle and moment, respectively. 

In the figure 2.8 presented the results of the calculation of the coefficients of 

drag force Cx, lift force Cy with value of angle of attack  from 0 deg to 30 deg for 
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reentry vehicle (Figure 2.7) by using DSMC method with the use of three 

gas-surface interaction models (Maxwell, Cercignani-Lampic-Lord). 

  

Figure 2.7  General view and schematic view of reentry vehicle. 

  

Figure 2.8  Dependencies of Cx () and Cy () for reentry vehicle. 

In the Figure 2.10 presented the results of the calculation of the coefficients of 

drag force Cx, lift force Cy with value of angle of attack  from  90 deg to + 90 deg 

for aerospace vehicles (Figure 2.9) by using DSMC method with the use of three 

gas-surface interaction models. In several works (Vaganov A. V., Drozdov S., 

Kosykh A. P., Nersesov G. G., Chelysheva I. F., Yumashev V. L.,      

Khlopkov Yu. I., Voronich I. V., Zay Yar Myo Myint, Khlopkov A. Yu.) 

investigated the aerodynamics characteristics of aerospace vehicle “Clipper, model 

of TsAGI” [66, 48-45]. 
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Figure 2.9  Geometrical view of aerospace vehicle “Clipper”. 

  

Figure 2.10  Dependencies of Cx () and Cy () for aerospace vehicle “Clipper”. 

From these results, we can explain, the drag and lift coefficient results of CLL 

model less than the Maxwell model as expected. The Maxwell model and CLL 

model predict the same lift, drag when the accommodation coefficients are equal to 

zero or one. In fact, for ατ = 1 in Maxwell model and ατ = αn = 1 in the CLL model, 

the two models give precisely the same. For accommodation coefficients not equal 

to zero or one, the CLL model gives higher aerodynamic forces than the Maxwell 

model for the same value of their respective accommodation coefficients. 

In figure 2.11 shows the dependence of Cx() and heat transfer coefficient Ch 

with the use of various gas-surface interaction models (Maxwell, 
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Cercignani-Lampic-Lord (CLL), Lennard-Jones (LJ)). In this reason, the 

accommodation coefficient  is 1. Coefficient Cx increases with the rise of the 

angle of attack. From the graphs, it is clear that the coefficients are sensitively 

different at models of the gas-surface interaction models with surfaces. 

  

Figure 2.11  Dependencies of Cx(α) and Ch() for aerospace vehicle with  

various gas-surface interaction models. 

 

Figure 2.12  Geometry view of aerospace vehicle. 
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Figure 2.13  Dependencies of Cx() and Cy() for aerospace vehicles. 

In figure 2.13 show the calculation results of the coefficients of drag force Cx, lift 

force Cy with value of angle of attack  from  90 to + 90 deg for aerospace vehicle 

(Figure 2.12) are presented. The calculation has been carried out through the 

methods described in the previous section. The parameters of the problem are the 

following: ratio of heat capacities  = 1.4; temperature factor Tw/T0 = 0.001,   

Tw/T = 0.1; velocity ratio s = 15; accommodation coefficients  = 0.5, 0.75, 1. 

The Maxwell model and the Cercignani-Lampis-Lord model turned out to 

have principal differences, but in most cases they gave close values of 

aerodynamic forces and moments [48, 49]. 

In order to simulate the partial surface accommodation, the CLL model was 

implemented into this DSMC calculation. The CLL model is derived assuming 

momentum components. The two adjustable parameters appearing in the CLL 

model are the normal component of translational energy αn and the tangential 

component of momentum στ. However, in the implementation of the CLL model 

in the DSMC method, Bird has shown that it is equivalent to specify the normal 
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αn and tangential ατ components of translational energy, ατ=στ(2−στ) and στ<ατ, 

assuming that στ lies between 0 and 1. 

For molecular velocity distributions, the Maxwell and CLL models gave 

similar x distributions, but distinct y distributions, at partial levels of 

gas-surface accommodation. Moreover, while the Maxwell scattering 

distributions experienced abrupt changes with increasing accommodation and 

position, the CLL distributions varied smoothly. For no significant additional 

cost, the CLL model gave more realistic scattering distributions. 

The Investigation provided better understanding of the effects of gas-surface 

interaction models in DSMC calculations and ultimately a better understanding of 

the accommodation coefficients of materials and gases for orbital and aerobreaking 

conditions. The gas-surface interaction models have fundamental differences, they 

give similar predictions of aerodynamic forces on various aerospace vehicle design. 

The calculations with normal, tangential accommodation coefficients are provided 

more sensitivity of the aerothermodynamics quantities of aerospace technologies. 
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