
American Journal of Computer Science and Engineering  
2014; 1(4): 30-38 
Published online November 10, 2014 (http://www.openscienceonline.com/journal/ajcse)  

 

Performance comparison of genetic algorithm and 
forward (explicit) Euler method on solving the 1st 
order ordinary differential equations  

Sambourou Massinanke, Zhang Chaozhu 

Harbin Engineering University, College of Information and Communication Engineering, Laboratory Room Number: 502, Apartment of 

International Students, Harbin, China 

Email address 

smass74@yahoo.com (S. Massinanke), sam@hrbeu.edu.cn (S. Massinanke), changchaozhu@hrbeu.edu.cn (Zhang Chaozhu) 

To cite this article 
Sambourou Massinanke, Zhang Chaozhu. Performance Comparison of Genetic Algorithm and Forward (Explicit) Euler Method on 

Solving the 1st Order Ordinary Differential Equations. American Journal of Computer Science and Engineering Research.  

Vol. 1, No. 4, 2014, pp. 30-38. 

 

Abstract 

Many approximation methods have been proposed to solve ODE (Heun’s Method; Midpoint; Taylor methods; Runge-
Kutta; ….), some are relatively efficient, in this work we use Genetic Algorithm one famous element of Evolutionary 
Algorithms to solve the forward (or explicit) Euler Method (that we call simply EM) , This study explores the performance 
comparison of GA and EM to determine the solutions of ODEs, which implicates a search for optimal values for the 
unknown function in the equations that best match an Initial Value Problem (IVP). 
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1. Introduction 

Our study presents the current scientific comprehension of 
the natural selection process with the aim of gaining an 
insight into the construction, application, and terminology of 
GAs (genetic algorithms). Evolution-Natural selection – is 
discussed in several treatises and texts. Charles Darwin’s 
theory of evolution was founded on four primary hypotheses 
[1]. First, a progeny has many of the features of its parents. 
This hypothesis implicates that the population is stable. 
Secondly, variations exist in features between individuals 
which can be passed from one generation to the next. The 
third hypothesis is that only a few percentages of the progeny 
survive to adulthood. Fourth, which of the offspring survive 
depends on their inherited features. Those hypotheses 
combine to give the theory of natural selection. Another 
group of biologically-inspired techniques are Genetic 
Algorithms (GAs). They get their inspiration from mixing the 
notion of genetic recombination with the evolution theory 
and survival of the fittest elements of a population [2]. 

Beginning with a random group of candidate parameters, the 
learning procedure establishes better and better estimations to 
the optimal parameters. The genetic algorithm is mainly a 
search and optimization method. However, we can pose 
almost any practical problem as one of optimization, 
including a lot of environmental modeling issues. The notion 
of Genetic Algorithm (GA) was presented by [3] with the 
purpose of making computers execute what nature does. GA 
is one of the best methods for solving the optimization 
problems which involve a large search space [4]. Lots of 
problems in Engineering and Natural Sciences domains are 
solved by a scalar differential equation or a vector 
differential equation called a system of differential equations. 
A differential equation (DE) is an equation associating an 
unknown function and one or more of its derivatives.. 

[The building of stable and efficient methods to solve IVP 
is in many respect subjects [5], [6], [7], [8], [9], [10], [11].  

In history, DEs (differential equation) take origin in 
engineering physics and chemistry, nowadays they have 
place in most of scientist fields: anthropology, biology, 
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medicine, etc… 
Mostly, in physical systems rise ODE (ordinary differential 

equation), many of them can’t  be integrated (solved) exactly, 
this is the main reason to elaborate  approximation methods 
[12],  Edwards and Penny (2000) [13], Boyce and DiPrima 
(2001) [14],  Coombes et al. (2000) [15], Van Loan (1997) 
[16],  Nakamura (2002) [17], Moler (2004) [18], and Gilat 
(2004) [19]. 

All these methods discretize the ODEs to produce different 
maps from the same equation but the aim is the same [20]. 

All the numerical integration methods involve different 
kind of errors at the integration, the effects of the errors are 
sometimes critical, therefore it is obvious to target least error-
methods i.e. methods which are as correct as possible to 
assure that the solution is inside a given subset of the phase 
space. Moreover the subset (of the phase space) must be 
small [21]. EM was published in 3 volume works: [22].  

During 1768-1770 Euler Method has been enhanced by 
many authors [23]. Despite its lacks, EM remains the basis 
for many higher accuracy methods [24], [25].  

Unluckily, many ODEs can’t be solved exactly. Therefore 
the ability to numerically estimate these methods is so 
significant. EM is a numerical technique to solve ordinary 
differential equations of the form:  

( )
( )

'

0 0

,f p qβ α β α
β α β

 = ≤ ≤


=
 

An equation composed of a differential equation with an 

initial condition ( )
( )

'

0 0

,fβ α β
β α β

 =


=

 is called a Cauchy problem 

This study explores the performance comparison of GA 
and EM to determine the solutions of ODEs, which 
implicates a search for optimal values for the unknown 
function in the equations that best match an Initial Value 
Problem (IVP). 

2. Euler Method (EM)  

2.1. Basis 

Let us consider the ordinary differential equation (ODE): 

( )
( )

'

0 0

,f p qβ α β α
β α β

 = ≤ ≤


=
                      (1) 

Discretization: 
The central idea behind numerical methods is that of 

discretization. That is we partition the continuous interval 

[ ]p,q  by a discrete set of 1N +  points: 

0 1 ... Np qα α α= < < < =  

The parameters 

1 , 0,1,..., 1n n nr n Nα α+= − = −                  (2) 

are called the step-sizes. We will be often interested in using 
an equally spaced partition where  

, 0,1,..., 1.n

q p
r r n N

N

−= = = −  

We will let 
nβ denote the numerical approximation to the 

exact solution ( )nβ α . A numerical solution of (1) consists of 

a set of discrete approximations ( )
0,...,n n N

β
=

. A numerical 

method is a difference equation involving a number of 
consecutive approximations , 0,...,j j kβ =   

From which we sequentially compute the sequence

, n 1,..., Nk nβ + = . 

The derivation of a number of numerical methods begins 

by integrating (1) between nα  and 1nα + . This gives: 

( )1 1

,
n n

n n

d
d f d

d

α α

α α

β α α β α
α

+ +=∫ ∫ ⇒

( ) ( ) ( )1

1 ,
n

n
n n f d

α

α
β α β α α β α+

+ − = ∫ . 

Now if we make the approximation  

( ) ( )( ) ( )1, , , ,n n n nf fα β α β α α α α +≈ ∈  

then  

( ) ( ) ( )( ) ( ) ( )( )1

1 1, ,
n

n
n n n n n n n n

f d f
α

α
β α β α α β α α α α α β α+

+ +− ≈ = −∫  

therefore ( ) ( ) ( ) ( )( )1 1 ,n n n n n nfβ α β α α α α β α+ +≈ + −  

This suggest the numerical method:  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 , ,
n n n n n n n n n

f rfβ α β α α α α β α β α α β α+ += + − = + , 

0,..., 1n N= − , i.e. 

( )1 ,
n n n n

rfβ β α β+ = +  , 0,..., 1n N= −            (3) 

Which is called the forward or explicit Euler Method. Note 

that from the initial condition 

( )0 0β α β=  

we can explicitly calculate
1β  by applying (3). This in turn 

allows us to calculate
2 3, ,.....β β   

The Euler Method will be closer to the exact solution as 
the step-size r  is taken smaller ( N →+∞  ) 

2.2. Algorithm 

Input: f , 0, , , Np q β  . 

Output: the approximate solution to ( )( )' ,fβ α β α=  

With initial guess  0α   over interval  [ ]p,q  

� Step One: Initialization 

Set 
q p

r
N

−=  
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Set 0 0β β=  

Set 0 pα =  

� Step Two: For 1i =  to N   do Step Three 

Step Three: Set ( )1 1 1,i i i if rβ β α β− − −= + ×  

Set  1i i
rα α −= +  

� Step Four: Return β   

Notice, algorithm returns an array of values, the 
thi  

element of return array is an approximations of ( )β α  at 

p irα = + .   

Example 

Let [ ]
( )

: 1, 2β
α β α

→ ℝ

֏

 such that ( ) ( )
( )

' 2 32 2 ,

1 0

fβ α α α α β
β

 = − + =


=

  (4) 

the aim is to determine the approximate solution of (4) with 

0.1r = . 

1, 2p q= =   0.1r =  , 2 1q p
r

N N

− −= = , then 10N = ; 
0 1α =  

( )0 1 0.1
i

ir iα α= + = +  

( ) 2 3, 2 2 0f α β α α β= − + +  

Table 1. Result of Euler Method on Solving the ODE 
[ ]

( )
: 1, 2β

α β α
→ ℝ

֏
,

( )
( )

' 2 32 2

1 0

β α α α
β

 = − +


=

 

n   nα  
nβ  ( ),

n n
f α β   ( )1 ,

n n n n
rfβ β α β+ = +   

0 1 0  0 0 
1 1.1 0 0.2420 0.0242 
2 1.2 0.0242 0.5760 0.0818 
3 1.3 0.0818 1.0140 0.1832 
4 1.4 0.1832 1.5680 0.34 
5 1.5 0.34 2.2500 0.565 
6 1.6 0.565 3.0720 0.8722 
7 1.7 0.8722 4.0460 1.2768 
8 1.8 1.2768 5.1840 1.7952 
9 1.9 1.7952 6.4980 2.445 
10 2 2.445   

The solution given by the Euler Method (EM) is: 

EMβ =( 1 0β =  ;  2 0.0242β =  ; 3 0.0818β =  ; 4 0.1832β =  ; 

5 0.34β =  ;  6 0.565β =  ; 7 0.8722β =  ;  8 . 81 276β =  ;  

9 1.7952β =  ;  10 2.445β = ) 

3. Genetic Algorithm 

3.1. Basis of GA 

The aim is to determine the values of an unknown function:  

[ ]
( )

: ,p qβ
α β α

→ ℝ

֏

 according to a finite set of values of

0 1 ...
N

p qα α α= < < < = ,
0i irα α= + ,( 1,..., Ni = ) ,           (5) 

q p
r

N

−=    we denote ( )i i
β β α= , ( )1,..., Ni =  the values of 

unknown function β  , ( )1,..., N
β β β=  is called the eventual 

solution. 

The population is the set of all the eventual solutions. 

( )tP
 represents the population at 

tht  generation, each 

chromosome of the population ( )1,..., Nβ β β=  is 

characterized by its component 
iβ  called genetic heritage. 

In each iteration, chromosomes which are best adapted are 
selected, the surplus are discarded. 

The following approximation formulas will be utilized: 

� -The derivative of β   function at 
i

α  is: ( )' 1i i
i

r

β ββ α −−≈  

(for small r ).  

� -Cauchy problem discrete form: ( )1 ,i i
i if

r

β β α β−− = , 

1,..., Ni =  , find ( )1,..., Nβ β is our purpose. 

� -Remind that general Cauchy problem is: ( )
( )

'

0 0

,fβ α β
β α β

 =


=

 

where 2:f D ⊂ →ℝ ℝ , D  open set containing ( )0 0,α β  . 

For eventual solution ( )1,..., N
β β β= , Cauchy problem 

discrete form is not verified, then we will consider the Error 

Formula ( )1 ,i i
i if

r

β β α β−− − , for any eventual solution 

( )1,..., N
β β β=  the cost function will be: 

( ) ( )1

1

,
N

i i
i i

i

H f
r

β ββ α β−

=

−= −∑   

The more ( )H β  small the more β  adapted. 

For any 1,..., Ni =   
iβ µ±  is the mutation of 

iβ  

3.2. Genetic Algorithm Applied to Our 

Problem 

(1) Engender a population ( )iP
 associated to 

thi  

generation, the initial population is a set of N  

chromosomes (eventual solutions), any generic 

chromosome is as: ( )1,..., N
β β β= . Some uniform 

perturbation of the initial population exits i.e.
( ) ( )0

0 0 1 0,...,j j

Nβ β µ β µ= ± ± , 1,...,j N= , , 1,..., Nj

k kµ = . 

(2) 1i i← + ; engender children, only the best adapted 

elements will survive, let ( )1,..., N
β β β= and 

( )1,..., N
γ γ γ=    be two individuals,  { }1,..., Nk ∈  such 

as: 
1,...,N

mink k l l
l

β γ β γ
=

− = −  . 

The algorithm will engender two children

( )1 1,..., , ,...,k k Nβ β γ γ+  and ( )1 1,..., , ,...,k k Nγ γ β β+  . 

(3) the algorithm converge when

( ) ( )1
1

1

,..., ,
N

l l
N l l

l

H f
r

β ββ β α β−

=

−= −∑  remains 

constant for different values of ( )1,..., N
β β β=  

(4) Determine the cost ( )H s  of H  at each individual 

( )1,..., Ns s s=   
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(5) In order to maintain the population constant, discard 
the surplus elements 

(6) Return to (2), while stopping criteria is not attained, the 
stopping criteria is: 

( ) ( )1i iH s H s ε+ − <  at generation  i , is  is the best 

individual in ( )iP . 

3.3. Convergence of GA 

An exact derivative formula (in mathematical analysis) is: 

( ) ( ) ( )
1

1'

1

lim
i i

i i

i

i i
α α

β α β α
β α

α α−

−

→
−

−
=

−
 ; (

0i irα α= + ⇒

1i i
rα α −− = ;

1i iα α −→  ⇔  0r →  ), then 

( )' 1

0
lim i i

i
r r

β ββ α −

→

−= ⇔  ( ) ( )' 1i i
i

O r
r

β ββ α −−= +  with

( )
0

lim 0
r

O r
→

=   therefore 0C∃ > : 

( )' 1 .i i
i C r

r

β ββ α −−− ≤                      (6) 

The cost function associated H   to ( )1,..., N
β β β= is: 

( ) ( )1

1

,
N

l l
l l

l

H f
r

β ββ α β−

=

−= −∑  

( )1,..., N
β β β= is better fitted⇒ ( )H β very small. 

If an eventual solution ( )1,..., N
β β β= is the limit of 

convergence sequence, by applying GA we get: for 0η > ,

( )1,..., Nβ β β∃ = ( ) ( )1

1

,
N

l l
l l

l

H f
r

β ββ α β η−

=

−= − <∑  ⇒  

( )1,..., N
β β β∃ = :  

( )1 ,l l
l lf r

r

β β α β−− − <                (7) 

We have: ( ) ( )' ,i i ifβ α α β− ≤  

( ) ( )' 1 1 ,i i l l
i l lf

r r

β β β ββ α α β− −− −− + −  

Using (6) and (7) we will get ( ) ( )' ', .i i if C rβ α α β− ≤  

with ' 1C C= +  ,so the convergence is proven. 

3.4. Convergence of EM 

The necessary condition and sufficient condition for a 

numerical method to be convergent are stability and 

consistency. Stability deals with growth or decay of error as 

numerical computation progresses. Now we state the 

following theorem to discuss the convergence of EM 

Theorem1 

If ( ),f α β  satisfies a Lipchitz condition in β  and is 

continuous inα  for ( )00 pα α≤ ≤ =   and defined a sequence

, 1,...,
n

n Nβ =  and if ( )0 0β β→  , then ( )n
β β α→ , as

n → +∞  uniformly inα  where ( )β α  is the solution of the 

IVP: 

( )
( )

'

0 0

,fβ α β
β α β

 =


=
 

Proof 

(See the accompanied file “3-Euler Method 

CONVERGENCE”) 

Example 

Let [ ]
( )

: 1, 2β
α β α

→ℝ

֏

 such that ( )
( )

' 2 32 2

1 0

β α α α
β

 = − +


=

           (8) 

The aim is to determine the approximate solution of (8) 
with 0.1r = . 

Solution 

We can begin by an initial population of 40 individuals and 
we will rejected 30 worst adapted by using the cost function  

( ) ( )
10

1
1 10

1

,..., ,
0.1

l l
l l

l

H f
β ββ β α β−

=

−= −∑  

where ( ) 2 3 2 3, 2 2 0 2 2f α β α α β α α= − + + = − +  

1, 2p q= =   0.1r =  , 2 1q p
r

N N

− −= = , then 10N = ; 

( )1,..., N
β β  ie ( )1 10,...,β β is the eventual solution which must 

be determined, 
0 1α =  ( )0 1 0.1

i
ir iα α= + = + , 1,...,10i =  are 

the partition of [ ]1, 2 , then the solution given by the Genetic 

Algorithm is: 

0 1 2 3 4

5 6 7 8

9 10

( 0, 0.010, 0.050, 0.130, 0.260,

0.450, 0.710, 1.070, 1.530,

2.110, 2.830)

= = = = = =
= = = =
= =

GA
β β β β β β

β β β β
β β

 

4. Theorem 1  

If ( ),f α β  and ( ),
f α β
β

∂
∂

 are both continuous functions of 

α  and β  in a region 
00 pα α< − <  and

00 qβ β< − <  

then there exists a unique solution ( )β β α=  in the interval

00 r pα α< − < ≤  , that satisfies the initial value problem 

(IVP): ( )
( )0 0

,
d

f
d

β α β
α

β α β

 =

 =

  

(file: 1-MATH10232_see theorem2.1, there is no 

information to reference this file, that is why I send u it) 

Remark: our example function satisfies the theorem. 

[ ]
( )

: 1, 2β
α β α

→ ℝ

֏
 

( ) ( )
( )

' 2 3 2 3, 2 2 0 2 2

1 0

fβ α α β α α β α α
β

 = = − + + = − +


=
 

( ) 2 3 2 3, 2 2 0 2 2f α β α α β α α= − + + = − + ; 
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( ) 2 3, 2 2
f α β α α
β

∂ = − +
∂ are both continuous (because 

polynomial functions) in 0 1 1α< − <  and 0 0 2β< − <  

5. Theorem2 (Error in EM) 

Suppose that ( ) ( ),
, ,

f
f

α β
α β

α
∂

∂
 and ( ),f α β

β
∂

∂
 are 

continuous and bounded functions on the rectangle 

[ ]g,mA = ×ℝ  and that that the interval [ ]p,q  satisfies

g p q m< < < . Let ( )k k kError β α β= −   (
kβ denote the 

numerical approximation to the exact solution ( )kβ α ) denote 

the error at step k  in applying Euler’s Method with N   steps 

of length r  to the differential equation ( )' ,fβ α β=  on the 

interval [ ]p,q  , with initial condition ( )0 0β α β=  . 

Then ( )( ) ( )( )1 1
2 2

k p C q p C

k

D D
Error r e r e

C C

α − −≤ − ≤ −  for 

0,1,...., Nk =  where the constants C  and D  are given by: 

( )
( )

,
max ,

A

f
C

α β
α β

β∈

∂=
∂

 , [ ]
( )''

p,q
maxD
α

β α
∈

=  . 

(file: 2-differential_ seeTheorem 12.12, there is no 

information to reference this file, that is why I send u it) 

We have: 
( )( )1

2

q p C

k

D
Error r e

C

−≤ −  for any 0,1,...,k N=  ⇒  

{ } { }

( )( ) ( )( )
0,1,..., 0,1,...,

sup sup 1 1
2 2

q p C q p C

k
k N k N

D D
Error r e r e

C C

− −

∈ ∈
≤ − = −   

if we will admit: 

( )( ) ( )1 1
2 2

q p C rNC

EM

D D
Error r e r e

C C

−= − = − ; ( 
q p

r
N

−= ) and 

( ) ( )1

1

,
N

i i
GA i i

i

Error H f
r

β ββ α β−

=

−= = −∑   

6. Performance Comparison of GA 

and EM 

6.1. Case of the Example 

Computation of EMError applied on EM
β  noted

( )EM EMError β  

( )( )1
2

q p C

EM

D
Error r e

C

−= − , This Error doesn’t depend on 

,i iα β  and f    

( ) 2 3 2 3, 2 2 0 2 2f α β α α β α α= − + + = − + ;
( )

( )
,

max ,
A

f
C

α β
α β

β∈

∂=
∂

; 

[ ]
( )''

p,q
maxD
α

β α
∈

=  it is easy to find ,C D  ; 8; 16C D= = ;  

( )( )
8 1

1 282.3
2 10

q p C

EM

D e
Error r e

C

− −= − = =  

( ) 282.3
EM EM

Error β =  

Computation of GA
Error applied on GAβ noted ( )GA GAError β  

0 1 2 3 4 5

6 7 8

9 10

( 0, 0.010, 0.050, 0.130, 0.260, 0.450,

0.710, 1.070, 1.530,

2.110, 2.830)

= = = = = = =
= = =
= =

GA
β β β β β β β

β β β
β β

 

( ) ( )1

1

,
N

i i
GA i i

i

Error H f
r

β ββ α β−

=

−= = −∑ ; 
0 1α =  

( )0 1 0.1
i

ir iα α= + = + , 1,...,10i = ; 10N = ; if we replace the 

letters by their values  ( ) 4.767
GA GA

Error β = . 

( ) ( )EM EM GA GA
Error Errorβ β> ⇒  GA is more accurate 

than EM (in this example) 

6.2. General Case 

Suppose theorem 1 and theorem 2 assumptions satisfied, 
for the solution ( )1,..., Nβ β β= of  the ordinary differential 

equation: ( )
( )

'

0 0

,f p qβ α β α
β α β

 = ≤ ≤


=

 

we compare  the Errors 

( )( )1
2

q p C

EM

D
Error r e

C

−= − ; 

( ) ( )1

1

,
N

i i
GA i i

i

Error H f
r

β ββ α β−

=

−= = −∑  

Remind that: q p
r

N

−= ; N  is the number of the 

subdivisions of the interval [ ]p,q then 1N ≥ ; 0r > . 

If we replace q p−  by its value in 
EMError we get 

( )1
2

rNC

EM

D
Error r e

C
= − ; and 

( ) ( )1

1

,
N

i i
GA i i

i

Error H f
r

β ββ α β−

=

−= = −∑  

( ) ( ), , , , , 1,...,i i i iD C f i Nα β α β =  are all constant, the 

general case must be done on ,r N   

We first vary the value of r  in ] [0, +∞  

In this case 
EMError  and 

GAError  become functions or r ; 

( ) ( )1 1
2

rNC

EM

D
Error h r r e

C
= = − and  

( ) ( )1
2

1

,
N

i i
GA i i

i

Error h r f
r

β β α β−

=

−= = −∑  

( )1h r and ( )2h r are both continuous function on 
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] [0,r ∈ +∞ ; 

( )
1

12

1

2lim lim

,

rNC

Nr r
i i

i i

i

D
r e

h C

h
f

r

β β α β
→+∞ →+∞

−

=

= =
− −∑

  

( )
1

lim lim
2 2

,

rNC rNC

N
r r

i i

i

D re D re

C C L
f α β

→+∞ →+∞

=

× = ×
∑

where 

( )
1

, t
N

i i

i

L f consα β
=

= =∑  ,therefore 

1

2

lim lim
2

rNC

r r
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that means 0R∃ > , ] [0,r∀ ∈ +∞ , ( ) ( )1 2r R h r h r> ⇒ >  then 

EM GAError Error>  then GA is more accuracy than EM 

Let us vary the value of N  in [1, [+∞  

( ) ( )

( ) ( )
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∑
 

First both functions are continuous on [1, [+∞  

( ) ( )1lim lim
2

rNC

N N

D
h N r e

C→+∞ →+∞
= = +∞  ;  
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L=  , there are two possibilities: 0 L or L< < +∞ = +∞    

1st case: 0 L< < +∞  

( )1lim
N

h N
→+∞

= +∞ ; ( )2lim 0
N

h N L
→+∞

= > ⇒   mathematically 

that means 0, [1, [R r∃ > ∀ ∈ +∞ , ( ) ( )1 2r R h N h N> ⇒ >    then 

EM GAError Error>  then GA is more efficient than EM 

2nd case: L = +∞  

( )1lim
N

h N
→+∞

= +∞ ; ( )2lim
N

h N L
→+∞

= = +∞ , we can process like 

this: 
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( with 0a rC= >  ) 

In Mathematical Analysis there is a theorem which states: 

Theorem 3 

If ( ) xf x e=  (Exponential function); for any Polynomial 

function ( )
0

N
i

i

i

P x a x
=

=∑  ( )( )0; 0; deg
N

a N N ree P≠ ≠ = ; 

then: 

( )
( )

0
lim lim

0

x
N

Nx x
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if af x e

if aP x a x→+∞ →+∞

+∞ >
= = −∞ >

 

This theorem allows us to conclude that: ( )
( )

1

2

lim
N

h N

h N→+∞
= +∞  

( )
( )

1

2

lim
N

h N

h N→+∞
= +∞ ⇒   mathematically that means 0R∃ > ,

[1, [r∀ ∈ +∞ , ( ) ( )1 2r R h N h N> ⇒ >  then 
EM GAError Error>  

then GA is more efficient than EM 

We have just showed that in any case GA is more efficient 

than EM. 

6.3. Experimental Study 

Experiment 1: 

The Example (above) 

[ ]
( )

: 1, 2β
α β α

→ ℝ

֏

 such that ( ) ( )
( )

' 2 32 2 ,

1 0

fβ α α α α β
β

 = − + =


=

  (eq) 

the aim is to determine the approximate solution of (eq) with. 

1, 2p q= = , 10N =    1
0.1

10

q p
r

N

−= = =  

' 2 3 3 42 2
2 2

3 4
Cβ α α β α β−= − + ⇒ = + +  where C  is any 

real number; ( ) 1
1 0

6
Cβ = ⇒ = , then 

[ ]
3 4

: 1, 2

2 2 1

3 4 6

β

α β α α

→
−= + +

ℝ

֏

;
1 0n n

r nrα α α−= + = +  where 

0,1,...,10n = ( ) , 0,1,...,10
n n

nβ β α= = ; the exact solution will be  

0 1 2 3

4 5

6 7

7 8

9 10

0, 0.0114, 0.0515, 0.1301,

0.2581, 0.4479

0.7128, 1.0674,

1.0674, 1.5275,

2.11, 2.8333

Exact

β β β β
β β

β β β
β β
β β

= = = = 
 = = 
 = = =
 

= = 
 = = 
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Table 2. Performance comparison of GA and EM on solving the example: 

Genetic Algorithm Euler-Method Conclusion 

n GAβ = ( )
0,1,...,10n n

β
=

 
EXACTβ  

( )
EXACT GA

Error GA

β β
=

−

 

EM
β  

EXACTβ  
( )

EXACT EM

Error EM

β β
=

−
 The best= 

The least 

0 0 0 0 0 0 0 EM= GA 

1 0.010 0.0114 0.00140 0 0.0114 0.0114 GA better 

2 0.050 0.0515 0.0015 0.0242 0.0515 0.0273  GA better  

3 0.130 0.1301 0.0001 0.0818 0.1301 0.0483 GA better 

4 0.260 0.2581 0.0019 0.1832 0.1301 0.0531 GA better 

5 0.45 0.4479 0.0021 0.34 0.2581 0.0819 GA better 

6 0.710 0.7128 0.0028 0.565 0.7128 0.1478 GA better 

7 1.070 1.0674 0.0026 0.8722 1.0674 0.1952 GA better 

8 1.530 1.5275 0.0025 1.2768 1.5275 0.2507 GA better 

9 2.110 2.11 0 1.7952 2.11 0.3148 GA better 

10 2.830 2.8333 0.0033 2.445 2.8333 0.3883 GA better 

Experiment 2: 

Table 3. Performance comparison of GA and EM on solving 

[ ]

( )
'

: 0,1

4.32

0 1

β

β β
β

 →


= −
 =

ℝ

  0.01r =  

Genetic Algorithm Euler-Method Conclusion 

n GAβ  
EXACTβ  

( )
EXACT GA

Error GA

β β
=

−
 

EM
β  

EXACTβ  
( )

EXACT EM

Error EM

β β
=

−
 The best= 

The least 

0 1 1 0 1 1 0 EM= GA 

1 0.647 0.64921 0.00221 0.643 0.64921 0.00621 GA better 

2 0.420 0.42147 0.00127 0.41345 0.42147 0.008 GA better 

3 0.267 0.27362 0.00662 0.26585 0.27362 0.00777 GA better 

4 0.175 0.17764 0.00264 0.17094 0.17764 0.0067 GA better 

5 0.108 0.17764 0.06964 0.10992 0.11533 0.00541 EM better 

6 0.072 0.07487 0.00287 0.07067 0.07487 0.0042 GA better 

7 0.047 0.04860 0.0016 0.04544 0.04860 0.00316 GA better 

8 0.030 0.03155 0.00155 0.02922 0.03155 0.00223 GA better 

9 0.021 0.02048 0.00052 0.01878 0.02048 0.0017 GA better 

10 0.0129 0.01330 0.0004 0.01208 0.01330 0.00122 GA better 

Experiment 3: 

Table 4. Performance comparison of GA and EM on solving 

[ ]
( )
( )

' 0.3

: 0, 2.5

1.2 7

0 3

e α

β

β α β
β

−

 →


= − +
 =

ℝ
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n GA
β  

EXACT
β  

( )
EXACT GA

Error GA

β β
=

−
 

EM
β  

EXACT
β  

( )
EXACT EM

Error EM

β β
=

−
 The best= 

The least 

0 3 3 0 3 3 0 EM =GA 

1 4.060 4.072 0.012 4.7 4.072 0.628 GA better 

2 4.330 4.323 0.007 4.893 4.323 0.57 GA better 

3 4.201 4.170 0.031 4.55 4.170 0.38 GA better 

4 3.801 3.835 0.03 4.052 3.835 0.217 GA better 

5 3.450 3.436 0.014 3.542 3.436 0.106 GA better 
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Experiment 4: 

Table 5. Performance comparison of GA and EM on solving 

[ ]
( )
( )

' 3 2

: 0, 4

2 12 20 8.5

0 1

β

β α α α α
β

 →


= − + − +
 =

ℝ

 , 0.5r =  

Genetic Algorithm Euler-Method Conclusion 

n GA
β  

EXACTβ  
( )

EXACT GA

Error GA

β β
=

−
 

EMβ  
EXACTβ  

( )
EXACT EM

Error EM

β β
=

−
 The best= 

The least 

0 1 1 0 1 1 0 GA better 
1 4.210 3.2188 0.9912 5.25 3.2188 2.0312 GA better 
2 3.511 3 0.511 5.875 3 2.875 GA better 
3 3.22 2.2188 1.0012 5.125 2.2188 2.9062 GA better 
4 1.910 2 0.09 4.500 2 2.5 GA better 
5 2.66 2.7188 0.0588 4.750 2.7188 2.0312 GA better 
6 3.11 4 0.89 5.875 4 1.875 GA better 
7 5.4 4.7187 0.6813 7.125 4.7187 2.4063 GA better 
8 2.9 3 0.1 7 3 4 GA better 

Experiment 5:  

Table 6. Performance comparison of GA and EM on solving 

[ ]
( )
( )

'

: 0,1

0 1

β

β α β α
β

 →


= − +
 =

ℝ

 , 0.2r =  

Genetic Algorithm Euler-Method Conclusion 

n GAβ  
EXACT

β  
( )

EXACT GA

Error GA

β β
=

−

 

EMβ  
EXACTβ  

( )
EXACT EM

Error EM

β β
=

−
 The best= 

The least 

0 1 1 0 1 1 0 EM =GA 
1 0.82 0.837 0.017 0.8 0.837 0.037 GA better 
2 0.689 0.741 0.052 0.68 0.741 0.061 GA better 
3 0.620 0.698 0.078 0.624 0.698 0.074 EM better 
4 0.65 0.699 0.049 0.619 0.699 0.08 GA better 
5 0.71 0.736 0.026 0.655 0.736 0.081 GA better 

Experiment 6:  

Table 7. Performance comparison of GA and EM on solving 

[ ]
( )
( )

'

: 0,0.5

0 1

β

β α αβ
β

 →


=
 =

ℝ

 0.1r =  

Genetic Algorithm Euler-Method Conclusion 

n GAβ  
EXACTβ  

( )
EXACT GA

Error GA

β β
=

−
 

EMβ  
EXACTβ  

( )
EXACT EM

Error EM

β β
=

−

 The best= 

The least 

0 1 1 0 1 1 0 EM= GA 

1 1.004 1.00501 0.00101 1 1.00501 0.00501 GA better 

2 1.012 1.0202 0.0082 1.01 1.0202 0.0102 GA better 

3 1.048 1.04603 0.00197 1.0302 1.04603 0.01  GA better 

4 1.070 1.08329 0.01329 1.061106 1.08329 0.022184  GA better 

5 1.102 1.13315 0.03115 1.1035524 1.13315 0.0295976 EM better 

 

7. Conclusion 

In this work we have studied GA and EM, we have applied 
both to solve the same equation, we have compared 
mathematically and experimentally proven that GA and EM 
and the remark is: 

In almost all the case GA outperforms EM in solving the 
ODE, Genetic Algorithms is a strong tool for many problems 
in scientific computation. It can solve not only ODE but also 
can be applied to solve problems of numerical analysis such  

System of linear equations, polynomial factorization, 
Travelling of Salesman Person, Knapsack Problem etc.  

So we can conclude that GA is more efficient than EM in 
solving of the ODE of the form:  

( )
( )

'

0 0

,f p qβ α β α
β α β

 = ≤ ≤


=
. 

GA remains a powerful technique to tackle problems in 
which there is no known method to get the solution. 
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