
American Journal of Environmental Engineering and Science 
2014; 1(3): 15-23 

Published online July 30, 2014 (http://www.openscienceonline.com/journal/ajees)  

 

Application of adaptive neuro-fuzzy inference 
systems (ANFIS) in modeling the effects of 
selected input variables on the period of 
oscillation in an unsteady flow through surge 
chamber 

Ilaboya, I. R.
1, *

, Oti, E. O.
1
, Atikpo E.

3
, Enamuotor, B. O.

2
, Umukoro, L. O.

3 

1University of Benin; Department of Civil Engineering, Faculty of Engineering, PMB 1154, Benin City, Nigeria 
2Department of Civil Engineering, Delta State University, Abraka, Nigeria 
3Department of Civil Engineering, Igbinedion University, Okada, Edo State, Nigeria 

Email address 

id_rudolph@yahoo.com (Ilaboya I. R.) 

To cite this article 
Ilaboya, I. R., Oti, E. O., Atikpo E., Enamuotor, B. O., Umukoro, L. O.. Application of Adaptive Neuro-Fuzzy Inference Systems 

(ANFIS) in Modeling the Effects of Selected Input Variables on the Period of Oscillation in an Unsteady Flow Through Surge 

Chamber. American Journal of Environmental Engineering and Science. Vol. 1, No. 3, 2014, pp. 15-23.  

 

Abstract 

In this research paper, an attempt was made to model the significant effects and the interactions of some selected input 

variables on the period of oscillation in an unsteady flow through surge chambers using adaptive neuro-fuzzy 

techniques. The choice of adaptive neuro-fuzzy technique is based on the fact that, it is a hybrid modeling algorithm that 

combines both neural network and fuzzy logic to obtain better result. The inlet valve to the reservoir was opened and 

adjusted to give a steady level of discharge from an overflow weir for a predetermined period of time. The flow rate of 

the water was thereafter computed using the volume against time relationship. A surge was then initiated following a 

sudden closure of the valve and the dynamics of flow behaviour was studied based on the period of oscillation. 

Statistical studies on the effects of selected input variables such as surge tower diameter, time of flow, velocity of flow, 

and rate of flow on the operational dynamics of unsteady flow in surge chambers was done using design of experiment 

(DOE) employing the 2-level factorial design with 3 central points’ and one replication. Results obtained were then 

modeled using Adaptive Neuro-Fuzzy Inference Technique (ANFIS) incorporated into MATLAB in fuzzy logic toolbox 

to determine the input variable (s) that possess the highest significant effects on the response variable (period of 

oscillation) and also to develop a Fuzzy Inference Systems (FIS) structure which can be employed to study the adequacy 

of results from similar experiment. Results obtained from the modeling shows that surge tower diameter with a root 

mean square error of 0.7360 appears to be the single variable with the highest significant effects on the amplitude of 

displacement. More also, for the combine variable effects, surge (tower diameter and velocity of flow) having a combine 

root mean square error of 0.4410 were seen to possess the highest significant effects on the amplitude of displacement. 
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1. Introduction 

Water flowing in a horizontal pipe will continue in its 

state of uniform and steady motion except there is an 

alteration in the conditions that kept the flowing water in 

that state of motion. One of such property that keeps the 

flowing water in its state of uniform motion is; the uniform 

velocity of flow and the uniform cross sectional area of the 
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pipe (1, 2, and 3). At constant velocity, the flow will be 

uniform with distance and remain steady with time and also 

for a pipe of uniform cross sectional area, the flow will also 

remain uniform provided the velocity is maintained 

throughout the flow distance. If the velocity of water 

flowing in a pipe of uniform cross section is suddenly 

diminished, pressure would be developed in the pipe line 

due to frictional resistance and wave propagation (4, 6, and 

7). This pressure rise or water hammer is normally 

manifested as a series of shocks, sounding like hammer 

blows, which may have sufficient magnitude to rupture the 

pipe or damage connected equipment 5, 11). It may be 

caused by the nearly instantaneous or too rapid closure of a 

valve in the line or by an equivalent stoppage of flow 

which would take place with the sudden pressure (13, 14). 

The pressure wave due to water hammer travels back 

upstream to the lintel end of the pipe, where it reverses and 

surges back and forth through the pipe, getting weaker on 

each successive reversal (16). The velocity of the wave is 

that of an acoustic wave in an elastic medium, the elasticity 

of the medium in this case being a compromise between 

that of the liquid and the pipe (17). The excess pressure due 

to water hammer is additive to the normal hydrostatic 

pressure in the pipe and depends on the elastic properties of 

the liquid and on the magnitude.  

Pressure transients are also referred to as surge pressure 

or, if referring to water systems, water hammer. The latter 

term suitably reflects the harmful effects that the hammer-

like blows accompanying the pressure surges can have on 

pipes and system components. Water hammer causes piping, 

valves, pipe fixtures, supports, system components, etc. to 

suffer the added strain of dynamic loads (13, 16, and 17). 

The major causes of water hammer are as follows; rapid 

closure of valves, sudden shut off or unexpected failure of 

power supply to centrifugal pump, and also pulsation 

problems due to hydraulic rams and reciprocating pumps 

(12). 

In this research paper, we employed adaptive neuro-

fuzzy inference systems (anfis) to study the unsteady nature 

of flow of water in a closed pipe, the flow behaviour and 

dynamics were investigated by varying some selected input 

variables such as surge tower diameter, time of flow, 

velocity of flow and the rate of flow. The resulting pressure 

hammer which was occasioned by the sudden closure of the 

control valve was translated in the form of period of 

oscillation along the surge tower. 

2. Sudden Closure of a Valve; the 

Time Series of Events 

Consider flow from a large reservoir (constant pressure; 

excess pressure p = 0) at speed u0.  

 

If a valve at the end of the pipeline is suddenly closed, 

pressure waves travel back and forth along the pipe. The 

time taken for pressure waves to travel from one end of the 

pipe to the other is given as  

c

L
t∆ =                                   (1) 

And the maximum water pressure (which occurs at the 

critical time of closure Tc or at any time less than Tc) is 

given by the expression (12); 

Hmax = 
G

CV0                               (2) 

Where:  

C = Velocity of pressure wave travel in (m/Sec) 

G = Acceleration due to gravity, 9.8 m/Sec
2 

V0 = Normal velocity in pipe line before sudden closure 

in (m/Sec) 

L = Length of pipe line (m) 

C = 

tEC

kd+1

1425

                         (3) 

Where; 

k = bulk modulus of water (2.07 x 10
8
 kg/m

2
) 

d = diameter of pipe in (m) 

Ct = Wall thickness of pipe in (m) 

E = modulus of elasticity of pipe material in kg/m
2
, for 

steel pipe, E is 2.1 x 10
10

 kg/m
2 

The sequence of events that follows the sudden closure 

of a valve is as follows; 

At t = 0, the valve is closed 

The water immediately next to the valve is compressed 

to an excess pressure + P∆ and a pressure wave starts to 

propagate back along the pipe. For 0 < t < t∆ , the 

propagating wave moves into unaffected fluid (u =u0 and p 

= 0). Behind the shock is stationary, compressed fluid (u = 

0, p = + P∆ ). 

 

At t = ∆t the wave reaches the reservoir 

All the fluid in the pipe is at rest; however, it is 

compressed to a higher pressure than the reservoir, so it 

begins to drive a flow u0 back toward the reservoir. The 

water-hammer wave is reflected. For ∆t < t < 2∆t the wave 

propagates back toward the valve, gradually decompressing 
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the pipe.  

 

If the actual time of closure T is greater than the critical 

time Tc, the actual water hammer is reduced approximately 

in proportion to Tc/T. water hammer wave velocity may be 

as high as 1370m/s for rigid pipe or as low as 850m/s for a 

steel pipe and for plastic pipes may be as low as 200m/s. 

3. Adaptive Neuro- Fuzzy Technique 

The complexity and the dynamism of real world problems 

require sophisticated methods and tools for the construction 

of knowledge systems that can be used in the solution to 

such problems. The search for systems that can solve 

increasingly complex problems has stimulated research in a 

number of scientific fields, especially Hybrid Intelligent 

Systems. This area seeks to combine different techniques of 

learning and adaptation to overcome their individual 

limitations. Among such systems, one important model — 

Neuro-Fuzzy Systems — is an approach that can learn from 

the environment and then reason about its state (18). 

Adaptive Neuro-fuzzy systems constitute an intelligent 

systems hybrid technique that combines fuzzy logic with 

neural networks in order to have better results (10).  A 

neuro-fuzzy system is based on a fuzzy inference system, 

which is trained by a learning algorithm derived from 

artificial neural network theory. While the learning 

capability is an advantage provided by artificial neural 

network, the formation of a linguistic rule base is an 

advantage provided by the fuzzy inference system. 

In recent years, the fuzzy system has been applied in 

numerous fields such as power system, industry's control 

(9). Neuro- fuzzy systems constitute an intelligent systems 

hybrid technique that combines fuzzy logic with neural 

networks in order to have better results. ANFIS can be 

described as a fuzzy system equipped with a training 

algorithm. It is quite quick and has very good training 

results that can be compared to the best neural networks. 

Neuro-fuzzy network have been widely used for many 

different industrial areas such as control, modeling, 

prediction, identification, and pattern recognition (8, 9).  

Neuro-fuzzy system represents connection of numerical 

data and linguistic representation of knowledge. The neuro-

fuzzy system works similarly to that of multi-layer neural 

network. This hybrid system uses the adaptive neural 

networks (ANNs) theory to characterize the input-output 

relationship and build the fuzzy rules by determining the 

input structure (10).  

Adaptive Neuro-Fuzzy Technique is a hybrid modeling 

algorithm that combines both Neural Network and Fuzzy 

Logic to produce better modeling results. Adaptive neuro-

fuzzy technique works similarly to that of neural network; 

it provides a method for the fuzzy modeling procedure to 

learn information about a data set. Adaptive neuro-fuzzy 

technique works better than linear regression and statistical 

model especially when the main focus is to establish the 

multiple interaction and significant effects of selected 

parameters. Unlike linear regression and statistical 

modeling techniques, adaptive neuro-fuzzy technique is a 

nonlinear modeling technique which models the 

interactions and significant effects of the selected input 

parameters on the measured response based on their root 

mean square error (RMSE). In which case, the single or 

combine parameter with the lowest root mean square error 

is adjured the parameter (s) with the highest significant 

effects on the measured response (amplitude of 

displacement). In addition, adaptive neuro-fuzzy techniques 

do not only allow a graphical visualization between the root 

mean square error and the single/combine parameters, it is 

also employed to generate a fuzzy inference system (Fis 

Structure) for experimental data which can be used to 

validate the adequacy of experimental data set obtained 

from similar experiment. 

4. Methodology of Research 

The equipment used for this research studies is the plint 

and partners surge tower model equipment with the 

following specific properties; 

1. Length of pipe (penstock) = 9.10m 

2. Diameter of penstock = 0.0611m 

3. Diameter of surge tower = 0.121m 

4. Cross sectional area of penstock (A1) = 0.00293m
2
 

5. Cross sectional area of surge tower (A2)  = 0.01150 

m
2
 

6. Hydraulic radius; (R = 
2

1

A

A ) 

7. Working fluid is water, having a bulk modulus of 

2.07 x 10
8
 kg/m

2
 

8. The penstock material is stainless steel with 

modulus of elasticity of 2.1 x 10
10

 kg/m
2
 

The input variables studied include; 

1. Diameter of surge chamber (m) 

2. Time of flow (s) 

3. Velocity of flow (m/s) and 

4. Rate of flow (m
3
/s) 

The response, (Dependent variable) measured was the 

period of oscillation (p).  Randomization of the selected 

variables was done in other to accurately generate 

experimental data sets that can be perfectly modeled using 

adaptive neuro-fuzzy technique and method of statistical 

design of experiment (DOE) was employed in this regard. 

For the statistical design of experiment, 2-level factorial 

design with 3 central points’ and one replication making a 

total of 19 experimental runs was employed. Statistical 

software package; Design Expert 7.0 was employed for the 

design of experiment. The coded values of the selected 

input parameters are shown in the table 1 and the 

experimental matrics are shown in table 2; 
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Table 1. Coded variables for input factors 

Variables -1 0 +1 

Surge tower diameter (X1) 0.08 0.121 0.200 

Time of flow (X2) 7.5 8.5 9.5 

Velocity of flow (X3) 320.50 367.50 410.50 

Flow Rate (X4) 0.750 1.078 2.345 

Table 2. 2- Level Factorial Experimental Matrics 

Run X1 X2 X3 X4 Response 

1 -1 -1 -1 -1  

2 -1 -1 -1 +1  

3 -1 -1 +1 -1  

4 -1 -1 +1 +1  

5 -1 +1 -1 -1  

6 -1 +1 -1 +1  

7 -1 +1 +1 -1  

8 -1 +1 +1 +1  

9 +1 -1 -1 -1  

10 +1 -1 -1 +1  

11 +1 -1 +1 -1  

12 +1 -1 +1 +1  

13 +1 +1 -1 -1  

14 +1 +1 -1 +1  

15 +1 +1 +1 -1  

16 +1 +1 +1 +1  

17 0 0 0 0  

18 0 0 0 0  

19 0 0 0 0  

The randomized experimental matrics using the real 

values of selected input variables are shown in table 3 

below; 

Table 3.  Real values of input variables 

Run X1 X2 X3 X4 Response 

1 0.080 7.500 320.5 0.750  

2 0.080 7.500 320.5 2.345  

3 0.080 7.500 410.5 0.750  

4 0.080 7.500 410.5 2.345  

5 0.080 9.500 320.5 0.750  

6 0.080 9.500 320.5 2.345  

7 0.080 9.500 410.5 0.750  

8 0.080 9.500 410.5 2.345  

9 0.200 7.500 320.5 0.750  

10 0.200 7.500 320.5 2.345  

11 0.200 7.500 410.5 0.750  

12 0.200 7.500 410.5 2.345  

13 0.200 9.500 320.5 0.750  

14 0.200 9.500 320.5 2.345  

15 0.200 9.500 410.5 0.750  

16 0.200 9.500 410.5 2.345  

17 0.121 8.500 367.5 1.078  

18 0.121 8.500 367.5 1.078  

19 0.121 8.500 367.5 1.078  

Experimental results obtained were then modeled using 

Adaptive Neuro- Fuzzy Inference Techniques (ANFIS) 

incorporated into MATLAB in fuzzy logic toolbox to 

analyze the significant effects and interactions of 

each/combine variables on the measured response (period 

of oscillation). 

The input data used for the modeling include; 

1. input_ name (data set generated from design of 

experiment) 

2. trn_data (data set the shows high conformity with 

theoretical values ) 

3. chk_data (data set the shows high deviation from 

theoretical values) 

To model the significant effects and interactions of the 

selected variables on the measured response (period of 

oscillation), we employ the simple program below: 

 

To get the train data and the checking data, we proceed 

as follows; 

 

To find the single and combine input parameter(s) with 

the highest influence on the response variable we proceed 

as follows: 

 

Training of data set allows you to check the 

generalization capability of the resulting fuzzy inference 

systems (FIS). To perform the data training we proceed as 

follows: 

 

5. Results and Discussion 

Experimental values of the period of oscillation (T) as 

obtained based on the statistical design are shown in table 4 

below;  
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Table 4. Experimental results of period of oscillation  

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Period 13 13 14 15 13 14 14 15 10 8 9 9 8 10 11 12 9 10 9 

 

These experimentally obtained values were then taken as 

the response variable; the values were slotted into table 3 

and presented to MATLAB for ANFIS modeling and data 

training.  

From the model results, surge tower diameter was seen 

from the model output as the single input variable with the 

most significant effect on the period of oscillation having 

the least root mean square error as presented in table 5 and 

figure 1 respectively. 

Table 5. Model Analysis Based on RMS Errors (Period of Oscillation) 

S/No: Model: Input Variable Training Error Checking Error 

1 Model 1 Surge Tower Diameter (m) 0.7360 2.4191 

2 Model 2 Time of Flow (s) 1.3333 4.2176 

3 Model 3 Velocity of Flow (m/s) 1.0646 4.2944 

4 Model 4 Rate of Flow (m3/s) 1.2270 4.5521 

 

 

Figure 1. Modeling the Effects of Single Parameter on the period of 

Oscillation 

On the effects of combined input variables on the period 

of oscillation, the output result of table 6 and figure 2 

shows that surge tower diameter and velocity of flow are 

the two most significant combined parameters controlling 

the period of oscillation in an unsteady flow in pipes; 

Table 6. Model Analysis Based on RMS Errors (Period of Oscillation) 

Model: Input Variables 
Training 

Error 

Checking 

Error 

Model 1 
Surge Tower Diameter + 

Time of flow 
0.7265 5.1490 

Model 2 
Surge Tower Diameter + 

Velocity of flow 
0.4410 5.0767 

Model 3 
Surge Tower Diameter + 

Rate of flow 
0.6455 4.9984 

Model 4 
Time of flow + Velocity 

of flow 
0.9129 4.4256 

Model 5 
Time of flow + Rate of 

flow 
1.1386 4.2317 

Model 6 
Velocity of flow + Rate 

of flow 
0.8498 4.2729 

 

Figure 2. Modeling the Effects of combine Parameter on the period of 

Oscillation 

On the three combined input variables with the highest 

significant effect on the period of oscillation, the ANFIS 

output as presented in the table 7 and figure 3 shows that 

(Surge tower diameter +Velocity of flow + Rate of flow) 

possesses the highest significant effects on the period of 

oscillation 

Table 7. Model Analysis Based on RMS Errors (Period of Oscillation) 

Model: Input Variable 
Training 

Error 

Checking 

Error 

Model 1 
Diameter + Time + 

Velocity 
0.4082 6.0916 

Model 2 
Diameter + Time + 

Rate 
0.6236 6.0034 

Model 3 
Diameter + Velocity 

+Rate 
0.2357 6.0672 

Model 4 Time + Velocity + Rate 0.7071 4.3917 
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Figure 3. Modeling the Effects of combine Parameter on the period of 

Oscillation 

To perform the data training we partitioned the result of 

the period of oscillation obtained from the experimental run 

into two. The first part which represents the data set that 

shows high conformity with theoretical value was taken as 

the training data while the second part which represents the 

data set that shows high deviation from theoretical value 

was taken as the checking data. The training data set let you 

check the generalization capability of the resulting fuzzy 

inference systems and also help generate a fuzzy inference 

system (FIS) structure that can be employed to validate the 

accuracy of data sets from similar work. The correlation 

between the training data sets and the checking data sets 

was investigated using neuro-fuzzy and the result is 

presented in the figure 4 below; (circle represent training 

data, plus is checking data) 

 

Figure 4. Correlation between training and checking data for period of 

oscillation 

The check data appears in the graphics user interface 

(GUI) plot as pluses superimposed on the training data. 

This data set was used to train a fuzzy system by adjusting 

the membership function parameters that best model this 

data. 

The membership function plot which shows the lower 

and the upper limit of each input variable was done and the 

resulting structures are shown in figures 5, 6, 7, and 8 

respectively.  

 

Figure 5. Surge tower diameter function plot 

 

Figure 6. Time of flow function plot 

 

Figure 7. Velocity of flow function plot 
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Figure 8. Rate of flow function plot 

 

Figure 9. Period of oscillation function plot 

The fuzzy inference system structure  (FIS) that shows 

the interactions between the input membership functions 

and the period of oscillation is presented as shown in figure 

10 below; 

 

Figure 10. Fuzzy Inference System Structure 

To perform the fuzzy inference systems training, we 

employed the hybrid optimization method, the number of 

training epochs which defines the number of iteration was 

set at 40, the error tolerance was set at zero and the graph 

of checking errors against the training errors was generated 

as shown in figure 11 below. 

 

Figure 11. Fuzzy Inference Systems Training 

The plot shows the checking error at the top and training 

error at the bottom. A training error of 0.0022996 as shown 

in figure 11 reveals that the FIS strucrure generated is 

adequate for the training and thus we can proceed to 

checking the experimentally obtained data against the 

trained FIS structure. To perform the testing task, we select 

checking data in the Test FIS portion of the ANFIS 

graphics user interface. When you test the checking data 

against the FIS structure, you will need to check for the 

average testing error as shown in figure 12 below 

 

Figure 12. Checking data against the FIS structure 

An average checking error of 0.2582 indicates that the 

training model was adequate and the FIS structure 

developed can be employed to test the adequacy of 

experimental data obtained from similar experiments. A 

rule based optimization was also done by allowing the 

software to generate its own rule that best fit the modeling 

process. The method of “and” was selected and about 252 

rules were generated for the modeling. Using the rule based 

optimization as genereated by ANFIS, the following results 

were obtained. 
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Figure 13. Rule based optimization results 

The surface plots which shows the interactions between 

the input membership function and the period of oscillation 

are shown in figures 14, 15, and 16 respectively. 

 

Figure 14. 3D surface plot 

 

Figure 15. 3D surface plots 

 

Figure 16.  3D surface plot 

6. Conclusion 

The suitability of adaptive neuro-fuzzy techniques over 

others modeling techniques has been demonstrated in this 

research work. Adaptive neuro-fuzzy technique works 

better than linear regression and statistical model especially 

when the main focus is to establish the multiple interactions 

and significant effects of selected input parameter on the 

measured response (period of oscillation). Unlike linear 

regression and statistical modeling techniques, adaptive 

neuro-fuzzy technique is a nonlinear modeling technique 

which models the interactions and significant effects of 

selected input variables based on their root mean square 

error (RMSE). In which case, the single or combine 

parameter with the lowest root mean square error is adjured 

the parameter (s) with the highest significant effects on the 

period of oscillation. 
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