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Abstract 

Insect-vectored diseases pose one of the greatest threats to plants on a global scale. At present, few effective control strategies 

have been developed to prevent the transmission of insect-transmitted diseases. These strategies largely rely on the use of 

chemical insecticides which have negative impacts on the environments and human health. In this study, a mathematical model 

is formulated and analysed to study the optimal control of the insects transmitted plants diseases. The model is sub-divided into 

two sub-populations namely the plant population and the insect population. The plant population is divided into two classes, 

namely; susceptible plants and infected plants and vector (insect) population comprises susceptible vector and infected vector. 

The optimal control model is formulated and analysed to minimize the transmission of disease from an infected vector (insect) 

to susceptible plant. Optimal control method using Pontryagin’s Maximum Principle was applied to determine the necessary 

conditions for the optimal control of the impact of plant inoculation. It is concluded that, if the plants are controlled then more 

plants will be produced compared with plants without control. 
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1. Introduction 

Plant disease is an abnormal and harmful physiological 

condition brought by living (biotic) agents, such as fungi, 

bacteria, nematodes and virus, or by non-living (abiotic) 

factors, such as nutrient deficiencies and water stress [17]. 

The occurrence and prevalence of plant disease vary from 

season to season, depending on the interaction of pathogens, 

environmental conditions and crops [20]. 

Vectors are organisms that can introduce a pathogen such as 

a bacterium or virus into a plant to cause an infection. Insects, 

mites, and nematode vectors focus the movement of plant 

pathogens among immobile plants [10]. In the late 18th 

century, there were many scientists who began to research the 

essence of plant diseases [19]. Much research on vector 

transmission seeks to understand the transmission process so 

as to explain why only certain kinds of insects or mites can 

serve as vectors and to identify what factors are required for 

transmission [10]. Rice gall dwarf virus, Tomato yellow leaf 

curl geminivirus, Africa cassava mosaic geminivirus are some 

of examples of plant diseases which are transmitted by insects. 

Some studies have been carried out to analyse the control and 

transmission dynamics of insect transmitted plant disease. 

Cultural strategy includes replanting, and/or removing diseased 

plants [9, 11]. In crop production system people use agro-

chemicals to eradicate plant disease [13]. Another disease 

control is by inducing resistance to plant which will enable the 

plant not to be infected even if the pathogen invades [1]. 

Mathematical modeling of the spread of infectious 

diseases continues to provide important insights into diseases 

behavior and control. Mathematical models of plant-virus (or 

pathogens) disease epidemics were developed to provide a 

detailed exposition on how to describe, analyse, and predict 

epidemics of plant disease for the ultimate purposes of 

developing and testing control strategies and tactics for crop 

protection [4]. Over the years, it has also become an 

important tool in understanding the dynamics of diseases and 

in decision making processes regarding intervention 

programs for controlling these diseases in many countries 
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Meng et al., [14] did a research on the dynamics of plant 

disease model with continuous and impulsive cultural control 

strategies. The model comprised of susceptible and infected 

plants. They found that impulsive removing of diseased 

plants is more efficient and more economical than continuous 

removing. But they did not attempt to design optimal control 

strategies for disease control. 

Abdullatif et al., [1] conducted a research on Modelling 

induced resistance to plant diseases. The study analyzed the 

plant control by inducing resistance to plant which will enable 

the plant not to be infected even if the pathogens invade. 

Cunniffe et al., [6] performed a research on the efficacies 

of two cultural control measures; namely, spacing of host 

plant and rouging symptotic trees. They found that it was 

important to reduce plant density in order to slow down the 

spread of disease significantly if the distance between hosts 

is sufficiently large. 

Cheryl et al., [5] considered the economics of controlling 

insect-transmitted plant disease. Biological control methods for 

controlling plant diseases in wine grapes were examined using 

a spacial model of a disease transmitted by insects from host 

plants in an adjacent source area by knowing behaviour of the 

insect carrier, and the ability of insect to transmit the disease. 

Nakazawa et al., [15] analysed a model for plant disease 

dynamics co-mediated by herbivore and herbivore-borne 

phytopathogens to have better understanding of plant disease 

dynamics. The results of the model highlight the importance of the 

eco-epidemiological perspective that was integration of tripartite 

interactions among host plant, plant pathogen and herbivore 

which is crucial for the successful control of plant diseases. 

The plant diseases which are transmitted by insect have 

been a problem in agricultural products. Some studies which 

have been carried out in plant disease control have failed to 

overcome the problem since the diseases are still causing the 

reduction of the yield and quality of harvested crops. 

However, none of these studies have considered the aspect of 

optimal control to reduce the spread of the insect transmitted 

plant disease. The goal of this research is to model and 

optimise the control of insect transmitted plant diseases by 

minimising the rate of transmission of disease from infected 

insects (vector) to susceptible plants (host). Therefore, this 

study intends to apply optimal control theory to minimize the 

spread disease by some control strategies and minimize the 

cost of applying controls, in order to best combat the spread 

of insect transmitted plant disease. 

2. Model Formulation 

This context of insect transmitted plant disease, grouped in 

plants and insects then two epidemiological stages are 

identified in each group. Plants: susceptible plants ( )P  and 

infected plants ( )F  and Insects: infected insects ( )I  and 

susceptible insects ( )S . The interaction of the groups/classes 

will cause the spread of the disease due to insects in which 

the population increases logistically with the rate ( )r  and the 

carrying capacity indicated by parameter ( )K . Insects are 

affected by disease from infected plants by the rate of 

transmission ( )β , and will leave the population due to 

disease with the rate ( )δ  also insect will die naturally with 

the rate ( )2µ . The recruitment of new plants into the farm 

will be indicated by ( )Q . Plants are diseased by insects with 

the rate ( )a  and the diseased plants will die by the rate ( )m . 

Some of the diseased (infected) plants are recovered at the 

rate ( )b  and go back to susceptible plants and then 

susceptible plants will be harvested at the rate ( )1µ . The new 

infections occur during the interaction between susceptible 

plants and infected insects and then infected plants and 

susceptible insects. We are going to minimize the 

transmission by increasing the disease resistance to the plants 

through plants inoculation. 

In formulating the model, the following assumptions are 

taken into consideration: 

The susceptible plant into the farm is due to recruitment 

(plantation of new plants). The susceptible Insects increase 

logistically. The infected Insects are due to infected plants 

and vice versa. The transmission is due to contact between 

infected plants (Host) and susceptible plants (Host). Vectors 

which are infected (and thus infective to hosts) do not 

recover (thus remain infective). The plants and insects 

populations are not constant. No interaction or contacts 

between plant and plant for transmission of the disease. 

In view of the above considerations and assumptions, we 

have the following flow diagram illustrates the interactions of 

the different population. 

 

Figure 1. Compartmental of insect transmitted plant disease. 

From the descriptions and compartmental diagram we 

have the following as the system of equations: 

1

dP
Q aPI bF P

dt
µ= − + −  

( )dF
aPI b m F

dt
= − +                            (1) 

( ) 21
dS S I

r S I SF S
dt K

β µ+ = + − − − 
   

( )2

dI
SF I

dt
β δ µ= − +

 

where S I K+ < , aPI  is the product of the rate of 

transmission of disease between the infected insects and 
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susceptible plants, ( ) 1
S I

r S I
K

+ + − 
 

 is the logistic growth of 

the insect at a particular environment, ( )S I+ is the total 

number of insect and the carrying capacity K  should not be 

equal to number of insects present. The non-negative initial 

conditions of the system (1) are

( ) ( ) ( ) ( )0 0,   0 0,   0 0 and  0 0. P F S I≥ ≥ ≥ ≥ Population of 

insects is not constant and plant population also is not 

constant, then there is interaction between insects and plants. 

3. Model Analysis 

The system of equations (1) analysed qualitatively to get 

insight into its dynamical features which will give a better 

understanding of the effects of control strategies on the insect 

transmitted plant disease. For the model (1) to be 

epidemiological meaningful, it is important to prove that all 

solutions with non- negative initial data will remain non-

negative for all the time. 

3.1. Positivity of the Solutions 

Lemma 1: Let the initial data be 

( ) ( ) ( ) ( )( ){ }0 , 0 , 0 , 0 0P F S I ≥ ∈Ω . Then, the solution set 

( ) ( ) ( ) ( ){ }, , ,P t F t S t I t  of the model system (1) is positive 

for all 0t ≥ . 

Proof: By considering the plant population then the 

equation of susceptible plant which is the first equation of the 

system (1), we have 

[ ]
1

1     

dP
Q aPI bF P

dt

aI P

= − + −

≥ − +

µ

µ
 

Integration yields 

( ) ( ) 10 0,   0
aI t

P t P e t
 
  

− +
≥ ≥ ∀ ≥

µ
        (2) 

Similarly, for the remaining equations of the system (1), to 

get 

( )dF
aP b m F

dt
= − +  

( )b m F≥ − +   

( ) ( ) ( ) 0,00 ≥∀≥≥⇒ +− teFtF tmb       (3) 

For the case of insect, when we consider the susceptible 

insect in equation three in the model (1) 

( ) 21
dS S I

r S I FS S
dt K

β µ+ = + − − − 
 

( )2F S≥ − +β µ  

( ) ( ) ( )
0,00 ≥∀≥≥⇒

+−
teStS

tF µβ
             (4) 

Similarly, for the remaining equations of the system (1) 

( )2

dI
SF I

dt
β δ µ= − +  

( )2 I≥ − +δ µ  

( ) ( ) 20 0
t

I t I e
 
 
 

− +
⇒ ≥ ≥

δ µ
                    (5) 

From above proof it is clear that, the solution set 

( ) ( ) ( ) ( ){ }, , ,P t F t S t I t  of the model (1) is positive for all

0t ≥ . 

3.2. Disease Free Equilibrium Point 

The disease free equilibrium point is obtained by setting 

the system of equations (1) equal to zero, to get 

1 0
dP

Q aPI bF P
dt

µ= − + − =                  (6) 

( ) 0
dF

aPI b m F
dt

= − + =                      (7) 

( ) 21 0
dS S I

r S I SF S
dt K

β µ+ = + − − − = 
 

         (8) 

( )2 0
dI

SF I
dt

β δ µ= − + =                    (9) 

From equation (6) 

1 0
dP

Q aPI bF P
dt

µ= − + − =  

This implies that 1 0Q Pµ− =  and thus get 

1

Q
P

µ
=                                     (10) 

Then from equation (8), it follows that 

( ) 21 0
dS S I

r S I SF S
dt K

β µ+ = + − − − = 
 

 

( ) 21 0
S

r S S
K

µ − − = 
 

 

( ) 21
S

r S S
K

µ − = 
 

 

21
S

r
K

µ − = 
 

 

We then obtain 

2( )
K

S r
r

µ= −                               (11) 

Therefore, the Disease Free Equilibrium (DFE) of the 

model system (1) is given by 
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( ) ( )2

1

, , , ,0, , 0
Q K

P F S I r
r

 
= − 
 

µ
µ

             (12) 

3.3. Local Stability of the Disease Free 

Equilibrium (DFE) 

Determination of the local stability of DFE depends on the 

basic reproduction number, 0R , defined as the average 

number of secondary infected individuals produced by single 

infectious individual during the course of his/her 

infectiousness typically in susceptible population [7]. By 

considering the system (1), the reproduction number can be 

easily computed using the next generation matrix approach as 

used by [8]. Reproduction number ( )0R  is determined by 

taking the infective classes and considering the disease free 

equilibrium. 

( ) ( ) 







−= 0,,0,,,, 2

1

µ
µ

r
r

KQ
ISFP  

The infections population is to be taken from system (1), 

which are: 

( )dF
aPI b m F

dt
= − +  

( )2

dI
SF I

dt
β δ µ= − +  

The operator iG , reflects the rate at which new infections 

arise and the operator iV , reflects the rate at which 

compartments corresponding to infection are exited 

i

aPI
G

SFβ
 

=  
 

 where
1

2

i

G
G

G

 
=  
 

                    (13) 

and 

( )
( )2

i

b m F
V

Iδ µ

 +
=  
 + 

 where 
1

2

i

V
V

V

 
=  
 

               (14) 

The Jacobian for the two infectious groups is as follows: 

1 1

2 2

G G

F I
G

G G

F F

∂ ∂ 
 ∂ ∂=  

∂ ∂ 
 ∂ ∂ 

 and 

1 1

2 2

V V

F I
V

V V

F I

∂ ∂ 
 ∂ ∂=  

∂ ∂ 
 ∂ ∂ 

 

then 

0

0

aP
G

Sβ
 

=  
 

                              (15) 

and 

( )
( )2

0

0

b m
V

δ µ
 +

=  + 
                      (16) 

Thus, 

( )( )
( )

( )
21

2

01

0
V

b mb m

δ µ
δ µ

−  +
=  ++ +  

 or 
( )

( )

1

2

1
0

1
0

b m
V

δ µ

−

 
 +
 =
 
 + 

                                     (17) 

Then 

1K GV −=  

( )

( )2

10
0

1
0

0

aP

b m
K

S

  
   +
  = ⇒
  
   +  δ µβ

 
( )

( )

2

0

0

aP

K
S

b m

δ µ
β

 
 +
 =
 
 + 

                                               (18) 

( )

( )

2

aP

K I
S

b m

−
+

− = ⇒

−
+

λ
δ µ

λ
β λ

 ( )( )
2

2

0
aP S

b m

βλ
δ µ

− =
+ +                                                   (19) 

 

When we introduce the value of DFE  

( ) ( ) 







−= 0,,0,,,, 2

1

µ
µ

r
r

KQ
ISFP

 

to the above quadratic equation we get 

( )
( ) ( )

22

1 2

0
r a QK

r b m

µ β
λ

µ δ µ
−

− =
+ +

                   (20) 

Thus the eigenvalues are 
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( )
( )( )

2

1

1 2

r a QK

r b m

µ β
λ

µ δ µ
−

=
+ +

                      (21) 

and  

( )
( )( )

2

2

1 2

r a QK

r b m

µ β
λ

µ δ µ
−

= −
+ +

                  (22) 

The reproduction number is obtained by taking the largest 

eigenvalue of the model system (1), so it is given by: 

( )
( )( )

2

0

1 2

r a QK
R

r b m

µ β
µ δ µ

−
=

+ +
                 (23) 

If 0 1R < , each individual (insect) transmit an average less 

than one new infected individual (plant) and hence diseases 

dies out. If 0 1R > , each individual produces more than one 

new infected individual and hence the disease is able to 

invade the susceptible population. Following [8] we have the 

following result: 

Theorem 1: The disease free equilibrium of the system (1) 

is locally asymptotically stable if 10 <R and unstable If 

10 >R . 

3.4. Endemic Equilibrium Point Analysis 

The existence and stability of endemic equilibrium is 

determined through the investigation of the possibility of 

existence of the backward or forward bifurcation due to 

existence of endemic equilibrium using the Centre Manifold 

Theory [3]. As a disease invades the population, it reduces 

the number of susceptible individuals in the population, 

which tends to reduce its reproductive rates. Figure 2 shows 

backward bifurcation for the chosen numerical data: 

1

2

0.5, 0.0005, 4.09, 0.14,

105, 3.994, 0.2, 0.5,

9.999, 0.002, 100

r

K a m u

b Q

β δ µ

µ

= = = =
= = = =

= = =
 

 

Figure 2. The figure of plants infected by insects versus reproduction 

number R0. 

The backward bifurcation implies that the reduction of 0R

below unity alone is not enough to eradicate insect 

transmitted plant disease, except when the initial cases of 

infection in both population is considered, a backward 

bifurcation is possible when the stable DFE co-exists with a 

stable endemic equilibrium for 0 1R <  [2]. The biological 

implication of backward bifurcation is that the classical 

requirement of having the reproduction number less than 

unity, although necessary, is no longer sufficient for disease 

control. This implies that effective disease control is 

dependent on the initial sizes of the sub-population of the 

model [2]. However, this equilibrium may not be globally 

asymptotically stable for 0 1R < . 

4. Analysis of Optimal Control 

In this section, we apply optimal control method using 

Pontryagin’s Maximum Principle to determine the necessary 

conditions for the optimal control of the impact of plant 

inoculation. The system (1) is extended by incorporate time-

dependent control ( )u t  which is control measure due to 

plant inoculation for prevention of plant diseases. This 

control measure will control the rate of transmission from 

infected insects to susceptible plants. The model will be as 

follow; 

( ) 11
dP

Q u aPI bF P
dt

µ= − − + −  

( ) ( )1
dF

u aPI b m F
dt

= − − +                   (24) 

( ) 21
dS S I

r S I SF S
dt K

β µ+ = + − − − 
 

 

( )2

dI
SF I

dt
β δ µ= − +  

where ( )0 1u t≤ ≤  is the control on plant inoculation to 

reduce plant disease. The objective functional J is defined 

over a feasible set of control ( )u t  applied over the finite time 

interval 0, ft 
   which is 

( ) dttBuFPuJ
ft

t∫ 






 ++=
0

2

21
2

1
min)( φφ            (25) 

where 1 2,φ φ  are the costs associated with susceptible plants 

and infected plants respectively, while B  is a relative cost 

weights for control measure. With the objective function

( )J u , our goal is to minimize the number of infected plants, 

while minimizing the cost of control ( )u t . Thus we thus 

seek an optimal control ( )u t∗
 such that 
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( ) ( ){ }minJ u J u∗ =                          (26) 

The necessary conditions that an optimal control problem 

must satisfy come from Pontryagin’s maximum principle 

[18]. This principle converts (25)-(28) into a problem of 

minimizing pointwise a Hamiltonian H , with respect to u  

defined by; 

( ) ( ) ( ) ( )

( ) ( )

2

1 2 1

2 2

1
1 1

2

1

p F

I s

H P F Bu t Q u aPI bF P u aPI b m F

S I
SF I r S I SF S

K

φ φ λ µ λ

λ β δ µ λ β µ

= + + + − − + − + − − +      

+  + − + + + − − −     
  

                    (27) 

Where pλ , Fλ , Iλ and sλ  are adjoint variables or co-state variables. 

Consider 
H

y t

λ∂ ∂= −
∂ ∂  

( ) ( )( )1 11 1p F

H d
u aI u aI

P dt

λ φ λ µ λ∂
 = − = − + − − − + − ∂

 

( ) ( )1 11 1
p

p Fu aI u aI
t

λ
λ µ φ λ

∂
 = − − − − − ∂

 

( )( )2
F

p F s I

dH
b b m S S

F dt

λ φ λ λ λ β λ β∂ = − = − + − + − +
∂

 

( ) 2
F

F s I p

d
b m S S b

dt

λ λ λ β φ λ β λ= + + − − −  

( )
2

2
S

S I

r S IdH
r F F

S dt K

λ λ β µ λ β
  +∂ = − = − − − − +   ∂   

                                                   (28) 

( )
2

2
S

S I

r S Id
r F F

dt K

λ λ β µ λ β
 +

= − + + + − 
 

 

( ) ( ) ( ) ( )2

2
1 1I

p F s I

r S IdH
u Pa u Pa r

I dt K

λ λ λ λ λ δ µ
  +∂ = − = − − − + − + − − +   ∂   

 

( ) ( ) ( ) ( )
2

2
1 1I

I p F s

r S Id
u Pa u Pa r

dt K

λ λ δ µ λ λ λ
 +

= + + − − − − − 
 

 

Transversality conditions 

( ) ( ) ( ) ( ) 0p f F f S f I ft t t tλ λ λ λ= = = =   for 0 ft t t≤ ≤                                                     (29) 

Optimal control variable defined as: 

( )( )max 0,min 1,u u∗ =  

0p F

H
Bu aPI aPI

u
λ λ∂ = + − =

∂
 

0p FBu aPI aPIλ λ+ − =  

( )1
F pu aP

B
λ λ= −  

( )
max 0, min 1,

F p aP
u

B

λ λ
∗

  −
  =

  
  

                (30) 

By standard control arguments involving the bounds on the 

controls, we conclude: 

( )

min

*

max

0

0

0

s

H
if

u

H
t if

u

H
if

u

u

u u

u

∂ < ∂


∂= = ∂
∂ > ∂

              (31) 
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Due to the a priori boundedness of the state and adjoint 

functions and the resulting lipschitz structure of the ODEs, 

we obtain the uniqueness of the optimal control for small 

ft    [12]. The uniqueness of the optimal control follows 

from uniqueness of the optimality system, which consists of 

(28) and (29) with characterization (30). There is a 

restriction on the length of time interval in order to 

guarantee the uniqueness of the optimality system. This 

smallness restriction of the length on the time is due to 

opposite time orientations of (28) and (29); the state 

problem has initial values and the adjoint problem has a 

final values. This restriction is very common in control 

problem [16]. 

5. Numerical Simulation and 

Discussion 

In this section, we study numerically the effects of 

transmission parameters of the model (1) and the effects of 

the time dependent control on the transmission of the disease. 

The numerical simulations of the model are carried out using 

the following set of estimated parameter values:  

1

2

0.004,  0.5,  0.05,  0.4,  

0.002,  0.014,  0.05,  

0.002,  110,  105

a r

b

m Q K

δ µ
µ β

= = = =
= = =
= = =

 

 

Figure 3. Variation of susceptible plant population for different values of α. 

Figure 3 shows that the number of susceptible plants 

decreases as the rate of transmission of the disease increases 

since the susceptible plants are not controlled. 

Figure 4 shows that the number of infected plant increase 

as the value of rate of transmission from infected insect to 

susceptible plants is increases with time. 

It is observed that as the rate of transmission from 

infected insect to susceptible plants increases, the 

population of susceptible insect decreases with time. The 

number of insects decrease due to disease and moved to the 

infected insect class. 

 

Figure 4. Variation in infected plant population for different values of α. 

 

Figure 5. Variation in Susceptible insects’ population for different values of α. 

 

Figure 6. Variation in infected insects’ population for different values of α. 

Figure 6 shows that infected insects are increasing due to 

the increase of the rate of transmission. 

0 5 10 15
100

120

140

160

180

200

220

240

Time (Months)

  
S

u
s
c
e
p
ti
b
le

 P
la

n
ts

a=0.001

a=0.002

 a=0.003

 a=0.004

0 5 10 15
0

100

200

300

400

500

600

Time(months)

  
In

fe
c
te

d
 p

la
n
ts

a=0.001

a=0.002

 a=0.003

a=0.004

0 5 10 15
0

10

20

30

40

50

60

Time (Months)

S
u
s
c
e
p
ti
b
le

 i
n
s
e
c
ts

a=0.001

a=0.002

a=0.003

a=0.004

0 5 10 15
0

10

20

30

40

50

60

70

80

90

100

Time(months)

in
fe

c
te

d
 i
n
s
e
c
ts

a=0.001

a=0.002

 a=0.003

a=0.004



8 Alex Xavery Matofali:  Modelling and Optimal Control of Insect Transmitted Plant Disease  

 

6. Simulation for the Optimal Control 

Problem 

This research intends to determine the impact of optimal 

control on the transmission of plant disease, so we want to 

control the rate of transmission from infected insects to the 

susceptible plants. The control is performed by inoculate the 

plants to increasing the resistance to disease. This control is 

applied in 15 months which implies that the final time (t=15), 

where the initial value of the plants and insects population 

are given as ( ) ( ), , . 100,10,50,5P F S I =  the same as without 

the control graphs. 

 

Figure 7. Variation in susceptible plants with control and without control with respect to time. 

It is observed in Figure 7 that the number of susceptible 

plants increases due to control strategy susceptible plants 

while the number of susceptible plants decreases when there 

is no control. The increase of number of susceptible plants 

population is also due to the increase of the number of 

recovered plants from the infected plant class. 

 

Figure 8. Variation in infected plants with control and without control with respect to time. 

Figure 8 shows a significant difference in the number of 

infected plant with optimal strategy compared to case without 

controls. Specifically, it is observed that the control strategy 

lead to a decrease in the number of infected plants as against 

increases in the uncontrolled case 

 

Figure 9. Variation in susceptible insects with respect to time when plants 

are controlled and uncontrolled. 

It is observed in Figure 9 that due to the control strategy, 

the number susceptible insects increase while the population 

of susceptible insects decreases when there is no control. 

 

Figure 10. Variation in infected insects with respect to time when plants are 

controlled and uncontrolled. 
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In Figure 10, the results show a significant difference in 

the number of infected insects with optimal strategy 

compared to case without controls. It is observed that the 

control strategy lead to a decrease in the number of infected 

insects as against increases in the uncontrolled case 

 

Figure 11. Variation of control profile with control and without control with 

respect to time. 

Figure 11, using optimal control requires to maintain the 

control at 100% for 14.9 months before dropping to its lower 

bound. 

7. Conclusion 

In this paper, the optimal control analysis for plant disease 

model was performed using Pontryagin’s maximum principle. 

Conditions for optimal control of the disease were derived 

and analysed with an effective use of plant inoculation to 

reduce plant diseases. The results suggest that the effective 

use of plant inoculation has a significant impact in reducing 

the plant disease. It is also observed that due to control 

strategy, the number of plants increases the number of 

infective plants decreases. It is concluded that plant 

inoculation is the best way to minimize transmission of plant 

disease is by inoculation which is used to increase resistance 

in preservation of plants. 
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