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Abstract 

The competing risks scenario is a complex setting for classical survival analysis when an individual is under risk of failing 

from various events. Since competing risk data are often found in many fields such as medicine, social science, biology etc., 

interest has been paid among researchers to focus towards the methodological competing risk setting. Additionally, it is not 

possible to have real data and thus to know about the real status, thus simulation studies lead to more advantages towards 

analyzing such responses. Hence, this paper focuses on investigating the performance of the most commonly used regression 

approaches for analyzing the competing risk responses namely, cause specific hazard model and sub-distribution hazard model 

by following pre-specified cause specific hazard ratio. A simulation study was carried out by varying the censoring distribution 

parameter and shape parameter while keeping the scale parameter constant, under nine scenarios. Summary statistics of cause 

specific hazard and sub-distribution hazard were different for the two methods and it showed that mean hazards of cause-

specific hazard model decreases when the shape parameter of the censoring distribution is increased. As a conclusion, this 

simulation study reveals that cause specific and sub-distribution hazard ratios are monotonically increasing with all scenarios 

and all scenarios performed approximately equally with minor differences for the two types of regression models. 
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1. Introduction 

Classical survival analysis are more complex when there 

are more mutually exclusive cause of failure. Therefore, 

competing risk is such a complex setting since it arises when 

an individual is under the risk of failing from various events 

[1]. The occurrence of failure due to some specific cause may 

or may not prevents, occurrence of other causes in the 

competing risk background. Thus, classical time to event 

methods are not proper mechanism for the competing risk 

data since kaplan meier assumption is violated in the 

presence of multiple events [2, 3]. As a result, Kaplan-Meier 

generally overestimate the probability of the event of interest 

and hence it yields biased results in the presence of 

competing events [1-3]. 

Competing risk data are often found in many fields. In a 

demographic study where the leading causes such as heart 

attcack, cancer, etc are registered and interest has been paid 

off to analyze each of death seperately. In a reliability study, 

breakdown of a mechanical device from some special reason 

is event of interest when there are numerous causes are 

available. In a clinical trials, as an example, interest focuses 

to find out the benefits of a new drug to prevent myocardial 

infraction, patients who have coronary disease are followed 

during three years. The failure of interest is Myocardial 

Infraction though patient may die from other causes. So, 

competing risk setting is highly extendend concept. 

Previously, latent failure time models were widely used 

and it had been heavily criticized in biomedical situation due 

to non-identibility of dependence structure between times to 

different types of event [4-6]. Recently, competing risk 

analysis has been determined on the cause, i.e event specific 

hazard, which are empirically distinguishable and entirely 

determine the competing risks process [2, 4, 5]. The most 

well-known approaches are cause specific hazard and 

subdistribution hazard for the analysis of competing risk data. 

In a cause specific hazard, modeling has been carried out by 
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applying Cox regression seperately for each event type/cause. 

In contrast, the proportional subdistribution hazard is directly 

linked to the cumulative incidence [7]. 

The aim of this article is explained how competing risks 

data can be simulated by following prespecified cause 

specific hazard as Bayersman et al, 2009 [8] and investigate 

the performance of most commonly used regression approach 

of competing risk under various realistic scenarios as an 

extension of the reference [9]. 

2. Methodological Background 

In a competing risks scenario, an individual can fail from 

any of several (say K event types), but only the time to 

failure for the earliest of these is observed. Hence, the unique 

feature of a competing risks setting is that for each individual, 

take the value of failure time T and failure mode C, and a 

joint model for T and C is needed. 
The joint distribution of (T,C) might be completely specified 

through the cause specific hazard function 	h�(t)  which is the 
principal identifiable quantity in competing risks observation [10] 
and it represents the probability of failure due to cause k at time t, 
given that no failure of any kind has occurred so far. The 

cumulative cause specific hazard (ʌ�(t)) equals the cause specific 
hazard summed from start of observation to time t. 

Λ(t) = 	ʌ�(t) +	ʌ�(t) + ⋯+ ʌ�(t)             (1) 

Another important quantity is the cumulative incidence 

function (F�(t)), which is 

F�(t) = Pr(failure	time	T ≤ t, cause = k) =
	� S(u)λ�(u)du�
                        (2) 

F�(t)	involves both the probability of having not failed from 

some other event first up to t (S(u)) and the cause specific 

hazard for the event of interest (h�(t)) at that time [10]. 

Regression Models for Competing Risks Data 

To summarize the effect of covariates in the competing 

risk settings, two well-known hazard based regression 

models; cause specific hazard regression model and 

subdistribution hazard regression models are reviewed by 

many authors [11 - 13]. 

2.1. Modeling Cause Specific Hazards 

The Cox proportional hazard models is applied to model 

cause specific hazard [6]. Cause specific hazard (h�(t|X)) is 
the function of baseline hazard rate hk,,o (t) and set of 
covariates by a vector X is given by, 

h�(t|X) = 	h�, (t) exp%β'�X( ;	Where, β-coefficient; X-

matrix of covariates                          (3) 

Here cause specific hazard is a function of some 

unspecified “baseline” cause specific hazard and set of 

covariates [10]. Since Cause specific hazard has been 

familiar with traditional cox proportional hazard, it can be 

modeled through standard statistical software by performing 

a classical regression, by considering the events at failure 

time of cause of interest and failures from other causes 

treated as censored observations [14]. Reference [8] indicates 

that cause specific hazards is “totally defined by the 

competing risk process”. 

2.2. Modeling Subdistribution Hazards 

The subdistribution hazard ( h�∗(t, X) ) for event k is 
defined as the probability for an individual to fail from cause 
k in an infinitesimal small interval ∆t, given that the 
individual experienced no event until time t or experienced 
an event other than k before time t, 

h�∗(t, X) = 	 lim∆�→ 
-
∆� 	pr	[t ≤ T ≤ t + ∆t , C =

k, |(T ≥ t	or	(T ≤ t, C ≠ k), X)3                     (4) 

2.3. Relationship Between Cause Specific 

and Subdistribution Hazard Rate 

The relationship is presented by [8] for the case of two 

possible endpoints and it can derived as, 

h-(t|X) = 41 +	67(�|8)9(�|8) : . h-
∗(t|X)                 (5) 

Where, S (t|X) – probability of being free of any event up 

to time t given X, h-(t)and	h-∗(t)  denoting the cause 
specific hazard and subdistribution hazard for event of 

interest respectively. F=(t)	 is the cumulative incidence 
function for the cumulative incidence function for the 
competing event (k=2). 

3. Simulation Study of Competing 

Risks Regression Models 

Simulate the competing risk data with different scenario to 

understand the variation of the modeling approaches. Here 

we refer excellent articles [8, 10, 15-17] for planning the 

simulation study. The R software, which is an open source 

software was used and the suggested method is illustrated. 

3.1. Simulating Survival Time Data Using the 

Inversion Method 

If the convenience function is not available, then general 

simulation techniques will be useful. Reference [16, 18, 19] 

well described how time to event data depending on a 

covariate vector X can be generated for proportional hazard 

models using the inversion method when there is no available 

function for the cause specific hazard. R function “unitroot” 

can be used for the inversion method. 
Assume that, specified cause specific hazard is such that 

h (t) > 0,  for all t. Then the cumulative all cause hazard 

A (t) = � h (u)du	�
  is strictly increasing as is the 

distribution function of T [18], 

F(t) = P(T ≤ t) = 1 = exp	(−A (t))               (6) 

FB-(t) and A 
B-  is the inverse of F and A  respectively. 

The important of the inversion method is that F (T), which is 
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transformed failure time, is uniformly distributed on [0, 1], 

P(F(T) < u) = P%T ≤ 	FB-(u)( = F%FB-(u)( = u; 	u ∈ [0,13  (7) 

If U is a random variable with uniform distribution on [0,1], 

then FB-(u) has the same distribution as T. hence, inversion 
method as follows [18], 

1. ComputeFB-(u) = A 
B-(−ln	(1 − u)), u ∈ [0,1]. 

2. Using the R function runif, generate random variable U. 

3. FB-(u) is the chosen replicate of T. 

3.2. Simulating the Competing Risk Data 

Following Pre-specified Cause Specific 

Hazards 

Beyesmann et al. (2009) presented an algorithm for 

generating competing risk data for two possible types of events 

as follows, 

1. Define cause specific hazard rates ℎ-(F) and ℎ=(F) for 
both types of event. 

2. Simulate survival times T using the inversion method 

with overall hazard rateshGHIJKLL(t) = 	h-(t) + 	h=(t). 
3. For a simulated survival time T, run a binomial 

experiment with probabilities h-(t) (h-(t) + 	h=(t))⁄  
for an event type K=1. 

4. Additionally, generate the censoring times C. 

5. Simulate two predictors; one variable is categorical and 

other variable is continuous. 
To meet the intended objective in this study, generate 

survival time and competing risk as above simulation 
algorithm. Then Cox cause specific hazard and sub-
distribution/Fine-Gray hazard [10] for the event of interest 
(k=1) were computed for the 1000 data sets with 1000 
observations each. These estimates are averaged due to the 
large number of simulated data sets to illustrate the behavior 
of the models under various scenarios. As a proposed 

methodology, two different parameters such that cause 

specific hazard for the event of interest (h-(t)) and censoring 
distribution parameter were varied. Here event of interest 

(h-(t) ) was changed while competing risk event (h=(t)) 
remains constant and assume that censoring distribution was 
Weibull distribution and its shape parameter (β) was varied 
while scale parameter remains constant (=1). Changing the 
parameters were chosen as follows, 

Cause specific hazard [10]: 

h-(t)(=0.5) < h=(t)(=1) 

h-(t)(=1) = h=(t)(=1) 

h-(t)(=1.5) > h=(t)(=1) 

Censoring distribution-weibull:- 

Scale parameter (α) =1 (constant) 

Shape parameter – β 

0 < β < 1 » β = 0.5 –Decreasing distribution 

β = 1 – constant distribution 

β > 1 » β = 3 – increasing distribution 

4. Simulation Results and Discussion 

A simulation study was conducted to evaluate the 

performance of the cause specific hazard and sub-distribution 

hazard for different settings under time constant hazard ratio. 

Summary statistics and hazard distribution for the estimated 

ratios for the different parameter of the censoring distribution 

with hazard values for the event of interest are shown in 

figures 1-2 and Tables 1-2. 

Censoring Distribution Parameter – β 

Hazard of Event of interest - h1 (t) 

Hazard of Competing event - h2 (t). 

Table 1. Summary Statistics of estimated average cause specific hazard. 

Β 
Specified Hazards 

Mean SE Mean Variance Q1 Median Q3 
h1 (t) h2 (t) 

0.5 

0.5 

1 

0.01101 0.000341 0.00306 0.00164 0.0026 0.00552 

1 0.01095 0.000343 0.00323 0.00164 0.00257 0.00538 

1.5 0.01091 0.000321 0.00285 0.00164 0.00258 0.00537 

1 

0.5 0.00865 0.000297 0.00221 0.00137 0.0021 0.00424 

1 0.00673 0.000212 0.00111 0.00136 0.00202 0.00399 

1.5 0.00714 0.00027 0.00153 0.00132 0.00192 0.00377 

1.5 

0.5 0.00584 0.000215 0.000981 0.00125 0.00174 0.00326 

1 0.00562 0.000218 0.00107 0.00127 0.00177 0.00324 

1.5 0.00575 0.000217 0.001 0.00125 0.00175 0.00326 

Table 2. Summary Statistics of estimated average subdistribution hazard. 

β 
Specified Hazards 

Mean SE Mean Variance Q1 Median Q3 
h1 (t) h2 (t) 

0.5 

0.5 

1 

0.13554 0.000251 0.00086 0.0546 0.12255 0.2074 

1 0.20847 0.00029 0.01947 0.08647 0.19151 0.3192 

1.5 0.21276 0.000328 0.00321 0.04243 0.18277 0.35585 

1 

0.5 0.12614 0.000221 0.0173 0.05337 0.11397 0.18914 

1 0.20168 0.000222 0.01747 0.08809 0.18622 0.30354 

1.5 0.25106 0.000288 0.02597 0.11205 0.23501 0.3782 

1.5 

0.5 0.24353 0.000255 0.02461 0.10917 0.22606 0.36633 

1 0.20085 0.00022 0.01624 0.09204 0.18894 0.29933 

1.5 0.20575 0.000275 0.02982 0.03608 0.18284 0.34425 
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Figure 1. Estimated Cause Specific hazard ratio. 
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Figure 2. Estimated sub distribution hazard ratio. 

Regarding the average cause specific hazard ratios, mean 

hazards are decreased when the shape parameter of the 

censoring distribution is increased. However, it seems, 

hazard ratios are similar to each other when the hazard of 

event of interest are varied while the shape parameter 

remains constant. In addition, Table 1 clearly reveals that 

interquartile ranges almost similar in each scenarios, but it 

indicates slight difference in variability. 
Table 2 represents estimated sub-distribution hazard under 

nine different scenarios. When hazard of event of interest are 
1 and 1.5, mean sub-distributions are identical to each other. 
However, there is a minor difference at the event of interest is 
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0.5 when compare to the 1 and 1.5 for the mean sub-
distribution hazard. According to Table 2 and Figure 2, 
variance of estimated hazard ratios is lower for β=0.5 and 1.5 

with h-(t) = 1.5 than the other scenarios. 

Figure 1 and Figure 2 depicts the cause specific hazard 

ratios are monotonically increasing and sub-distribution 

hazard ratios are increasing in each scenarios. 

5. Conclusions 

In this article, proposed methodology was a simulation 

study to investigate the performance of cause specific hazard 

and sub-distribution hazard, which are the most popular 

competing risk regression models among the researchers. 

Results are illustrated by the graphical display of summary 

statistics of the estimated cause specific and sub-distribution 

hazard obtained from the nine different scenarios by 

changing the censoring distribution shape parameter and 

hazard of event of interest while the hazard of competing risk 

remains constant. 

As presented in the simulation results, all nine scenarios 

performed equally with a minor difference within the 

regression method. However when comparing the two 

regression methods, cause specific and sub-distribution 

hazard’s summary statistics were different to each other. But, 

both Cause specific hazard and sub-distribution hazard 

showed increasing pattern. However, there was a significant 

variability difference in sub-distribution hazard when the 

hazard of event of interest is 1.5 and shape parameter is 0.5 

and 1. 

Appendix 

# This ensures that the package is loaded requires(cmprsk) 

factor2ind<-function(x, baseline){ 

xname<-deparse(substitute(x)) 

n<-length(x) 

x<-as.factor(x) 

if(!missing(baseline))  

x<-relevel(x, baseline) 

X<-matrix(0, n, length(levels(x))) 

X[(1:n)+n*(unclass(x) -1)]<-1 

dimnames(X)<-list(names(x), paste(xname, levels(x), 

sep=":")) 

 

return(X[,-1,drop=FALSE]) 

} 

 

#Generating data using a function 

gen.data<-function(h1,h2,n,c1,c2){ 

 #definition of cause sppecific hazard functions for the 

event of interest 

h1<-h1 

 

#cumulative cause specific hazard function 

H1<-function(t){ 

 h1*t 

} 

#definition of cause specific hazard function for the 

competing event 

h2<-h2 

 

#cumulative hazard -competing event 

H2<-function(t){ 

 h2*t 

} 

 

#determination of event types 

ev.type<-c() 

for(i in 1:n){ 

ev.type[i]<-sample(1:2,1,prob=c(h1,h2)) 

} 

 

#generating event times using inversion method(when 

there is no way to find out inverse of A0) 

s.fct<-function(t,y){ 

 return(H1(t)+H2(t) +y) 

} 

ev.time<-c() 

for(i in 1:n){ 

uz<-runif(1) 

ev.time[i]<-uniroot(s.fct,c(0.00000000001,500),y=log(1-

uz))$root 

} 

 

 #generation of censoring times and determination of status 

variable 

censtime<-rweibull(n,c1,c2) 

obs.time<-pmin(censtime,ev.time) 

stat<-ev.type*as.numeric(ev.time<censtime) 

 

#Generation of covariates 

x1<-sample(0:1,n,rep=TRUE,prob=c(0.5,0.5)) 

x2<-runif(n) 

 

cov<-cbind(x1,x2) 

 

#generation of data frame 

data<-data.frame(obs.time,stat,x1,x2) 

data$x1<-

factor(data$x1,levels=c(0,1),labels=c("male","female")) 

return(data) 

} 

 

#example for generating data for the 

h1=0.5,h2=1,n=1000,c1=0.5,c2=1 

data_1<-gen.data(0.5,1,1000,0.5,1) 

x1<-data_1$x1 

x2<-data_1$x2 

obs.time<-data_1$obs.time 

stat<-data_1$stat 

covariate<-cbind(factor2ind(x1),x2) 

write.table(data_1,file="file path with data file 

name",sep="\t", col.names = TRUE, row.names=FALSE) 
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#cause specific hazard regression 

mod_cause_1<-

coxph(Surv(obs.time,stat==1)~x1+x2,data_1) 

capture.output(summary(mod_cause_1),file=" file path 

with cause specific model file name ") 

 

#baseline hazard 

baseh_1<-basehaz(mod_cause_1,centered=TRUE) 

basehv_1<-data.frame(baseh_1["hazard"]) 

baseh_11<-data.frame() 

baseh_11[1,1]<-basehv_1[1,1] 

for(i in 2:nrow(basehv_1)){ 

baseh_11[i,1]<-basehv_1[i,1]-basehv_1[i-1,1] 

} 

coefmod<-coef(mod_cause_1) 

expvalue_1<-

matrix(exp(coefmod["x1female"]*factor2ind(x1)+coefmod["

x2"]*x2)) 

d_1<-matrix(,nrow(baseh_11),nrow(data_1)) 

for(i in 1:nrow(expvalue_1)){ 

 d_1[,i]<-expvalue_1[i,1]*baseh_11[,1] 

} 

 

haz_cau_1<-data.frame(baseh_1["time"],d_1) 

write.table(haz_cau_1,file=" file path with file ",sep="\t", 

col.names = TRUE, row.names=FALSE) 

 

#subdistributional hazard 

mod_sub_1 <- crr(obs.time,stat,covariate) 

capture.output(summary(mod_sub_1),file=" file path with 

file name for merging cause specific hazard ") 

write.table(predict(mod_sub_1,covariate),file=" file path 

with file name ",sep="\t", col.names = TRUE, 

row.names=FALSE 

 

#simulate 1000 datasets for one set of parameter. i.e 

gen.data function have to be run 1000 times for generating 

1000 data sets. 

#merge data, calculate the average hazard and plotting 

setwd("file directory for data merging/") 

files<-list.files(getwd()) 

DF<-read.csv(files[1]) 

time<-DF[,1] 

hazard<-rowMeans(DF[,-1]) 

DF_mean<-data.frame(time,hazard) 

for(i in 1:length(files)){ 

df<-read.csv(files[i]) 

time<-df[,1] 

hazard<-rowMeans(df[,-1]) 

df_mean<-data.frame(time,hazard) 

hazard<-rbind(DF_mean,df_mean) 

DF_mean<-hazard 

} 

write.csv(hazard,"hazard_ratio.csv",row.names=FALSE,qu

ote=FALSE) 

myplot<-

ggplot(hazard,aes(x=time,y=hazard))+ggtitle("Hazard-

n1000,h1=0.5,beta=0.5(censoing distribution)") 

+labs(x="Time",y="Estimated cause specific 

hazard")+geom_point()+geom_smooth(linetype="dashed",co

lor="darkred",fill="blue") 

ggsave(filename="myPlot.jpeg", plot=myplot) 
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