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Abstract 

The main aim of this work is to define and exemplify various decay concepts and to emphasize connections between them. 

These decay concepts are included in a general concept,the so-called (h, k)-decay. Some illustrating examples clarify the 

relations between these properties. 
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1. Introduction 

In the mathematical literature of the last decades, the 

asymptotic properties of solutions of evolution equations in 

finite or infinite dimensional space have proved to be 

research area of large intensity. There were defined and 

developed concepts of the  asymptotic behaviors, as 

stability, expansivity, dichotomy (see [1--16] and the 

references therein), based on the fact that the dynamical 

systems which describe processes from economics, physical 

sciences, or engineering are extremely complex and the 

identification of the proper mathematical model is difficult. 

In this paper, let X  be a real or complex Banach space. 

The norm on X  and on ( )XB  the Banach algebra of all 

bounded linear operators acting on X , will be denoted by 

|| ||⋅ . Let I  be the identity operator on X  and T  be the 

set defined by { }2( , ) : 0T t s t s+= ∈ ≥ ≥ℝ . 

Definition 1.1. 

An operator-valued function : ( )U T X→ B  is said to 

be an evolution operator on X  iff the following relations 

hold: 

(e1) ( , )U t t I=  for every 0t ≥ ; 

(e2) 0 0( , ) ( , ) ( , )U t s U s t U t t=  for all ( , )t s  and 

0( , )s t T∈ . 

If , : [0, ) [1, )h k + = ∞ → ∞ℝ  then we introduce the 

concept of ( , )h k -decay as follows: 

Definition 1.2. 

The evolution operator : ( )U T X→ B  is said to be 

with ( , )h k -decay (and we denote this by ( , )h k -d) iff 

there are 1N ≥  and 0 0t >  such that 

( )
( ) ( , )

( )

h s
Nk s U t s x x

h t
≥                        (1) 

for all ( , , )t s x T X∈ ×  with 0s t≥ . 

In the next section some particular cases of ( , )h k -decay 

are considered. Some illustrating examples clarify the 

connections between these stability concepts. 

2. Exponential Decay 

Let : ( )U T X→ B  be an evolution operator on 
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Banach space X . 

Definition 2.1. 

The evolution operator : ( )U T X→ B  is said to be 

with: 

(i) uniform exponential decay (and denoted as u.e.d.) iff 

there are 1N ≥ , 0α >  and 0 0t >  such that 

( )( , ) t sN U t s x e xα− −≥              (2) 

for all ( , , )t s x T X∈ ×  with 0s t≥ ; 

(ii) exponential decay in the sense Barreira-Valls (and 

denoted as B.V.e.d.) iff there are 1N ≥ , 0α > , 0β ≥  

and 0 0t >  such that 

( )( , )s t sNe U t s x e xβ α− −≥               (3) 

for all ( , , )t s x T X∈ ×  with 0s t≥ ; 

(iii) (nonuniform) exponential decay (and denoted as e.d.) 

iff there are 1N ≥ , 0α > , 0 0t >  and a function 

: [1, )k + → ∞ℝ  such that 

( )( ) ( , ) t sNk s U t s x e xα− −≥            (4) 

for all ( , , )t s x T X∈ ×  with 0s t≥ . 

Remark 2.2. 

It is obvious that 

u.e.d.⇒B.V.e.d.⇒ e.d., 

but the converse implications are not necessarily valid. To 

show this, we consider the following two examples. 

Example 2.3. 

(Evolution operator with B.V.e.d and without u.e.d) 

Consider the evolution operator (on X = ℝ ) 
( ) ( ): ( ), ( , ) r t r sU T X U t s x e x−→ =B , where 

( ) cos 2r t t t t= − . 

Successively, we have 

2 2( ) ( ) ( ) 2 sin 2 sin
2 2

t s
r t r s t s t s− ≥ − − − +  

( ) 2 , 0t s t t s≥ − − − ∀ ≥ ≥ . 

Thus 
2 ( )( , ) , ( , , )t t se U t s x e x t s x T− −≥ ∀ ∈ ×ℝ , 

which is equivalent with 
2 3( )( , ) , ( , , )s t se U t s x e x t s x T− −≥ ∀ ∈ ×ℝ , 

This shows that U  has B.V.e.d. 

On the other hand, if we assume a contradiction that U  

has uniform exponential decay. Letting 

(2 1) , 2 ,t n s n nπ π= + = ∈ℕ  and x X∈  with 

1x =  in Definition 2.1-(i), we deduce that 

( 3) 4 ,nNe e nα π π− ≥ ∀ ∈ℕ , 

which is not true. Therefore, U  has not u.e.d. 

Example 2.4. 

(Evolution operator with e.d and without B.V.e.d) Let 

: [1, )u + → ∞ℝ  be a continuous function with 

( 1 ) 1u n n+ =  and 
2

( ) nu n e=  for all 
*n∈ℕ . 

Then the evolution operator (on ℝ ) defined by 

( )( )
( , )

( )

t su t
U t s e

u s

− −=  satisfies the relation 

( )
( ) ( , ) [1 ( )] ( , ) ,

0,

t s
k s U t s x u s U t s x e x

t s x

− −= + ≥
∀ ≥ ≥ ∀ ∈ℝ

 

and hence U  has e.d. 

If we suppose that U  has B.V.e.d. then for 
*1 , ,t n n s n n= + = ∈ℕ  and x X∈  with 1x =  

in Definition 2.1-(ii), we obtain a contradiction and hence 

U  has not B.V.e.d. 

Let E  be the set of all functions : [1, )f + → ∞ℝ  

with the property that there is an 0α ≥  such that 

( ) tf t eα=  for every 0t ≥ . 

Remark 2.5. 

(i) U  is with u.e.d. iff there are h ∈E  and 

.( 1)k const= ≥  such that U  has ( , )h k -decay; 

(ii) U  is with B.V.e.d. iff there are ,h k ∈E  such that 

U  has ( , )h k -decay; 

(iii) U  is with e.d. iff there are h ∈E  and a function 

: [1, )k + → ∞ℝ  such that U  has ( , )h k -decay. 

3. Polynomial Decay 

Let : ( )U T X→ B  be an evolution operator on 

Banach space X . 

Definition 3.1. 

The evolution operator : ( )U T X→ B  is said to be 

with: 

(i) uniform polynomial decay (and denoted as u.p.d.) iff 

there are 1N ≥ , 0α >  and 0 1t ≥  such that 

( , )N U t s x t s xα α−≥                 (5) 

for all ( , , )t s x T X∈ ×  with 0 1s t≥ ≥ ; 

(ii) polynomial decay in the sense Barreira-Valls (and 



 Open Science Journal of Mathematics and Application 2014; 2(3): 33-36 35 

 

denoted as B.V.p.d.) iff there are 1N ≥ , 0α > , 0β ≥  

and 0 1t ≥  such that 

( , )Ns U t s x t s xβ α α−≥                   (6) 

for all ( , , )t s x T X∈ ×  with 0 1s t≥ ≥ ; 

(iii) (nonuniform) polynomial decay (and denoted as p.d.) 

iff there are 1N ≥ , 0α > , 0 1t ≥  and a function 

: [1, )k + → ∞ℝ  such that 

( ) ( , )Nk s U t s x t s xα α−≥                (7) 

for all ( , , )t s x T X∈ ×  with 0 1s t≥ ≥ . 

Remark 3.2. 

It is obvious that 

u.p.d.⇒B.V.p.d.⇒ p.d. 

The following two examples show that the converse 

implications between this decay concepts are not valid. 

Example 3.3. 

(Evolution operator with B.V.p.d and without u.p.d) Let 

: (0, )u + → ∞ℝ  be the function defined by 

3 sin ln( 1)( ) ( 1) tu t t − += + . 

Then 
( )

: ( ), ( , )
( )

u t
U T U t s x x

u s
→ =ℝB  is an 

evolution operator on X = ℝ  with 
2 1

4 4 5

( 1) 2
( , )

( 1) (2 ) 8

t t st
U t s x

s s s

−+≥ ≥ ≥
+

 

for all ( , , )t s x T X∈ ×  with 0 1s t≥ =  and hence 

U  is with B.V.p.d. 

If we suppose that U  has u.p.d. then there exist 1N ≥ , 

0α >  and 0 1t ≥  such that 

3 sin ln( 1) 3 sin ln( 1)( 1) ( 1) ( 1) ( 1)s tN t s s t s tα α+ − ++ + ≥ + +  

for all 0t s t≥ ≥ . 

Then for exp(2 2) 1t nπ π= + −  and 

exp(2 ) 1s nπ= −  we obtain a contradiction. 

Example 3.4. 

(Evolution operator with p.d and without B.V.p.d) Let 

: [1, )u + → ∞ℝ  be a continuous function with 

( 1 )u n n e+ =  and ( ) nu n e=  for all 
*n∈ℕ . 

Then the evolution operator (on ℝ ) defined by 
2

2

( )
( , )

( )

u t s
U t s x x

u s t
=  satisfies the 

relation 
2 2( ) ( , ) [1 ( )] ( , )k s U t s x u s U t s x s t x−= + ≥  

for all ( , , )t s x T X∈ ×  with 0 1s t≥ =  and hence 

U  is with p.d. 

If we suppose that U  has B.V.p.d. then for 

1 ,t n n s n= + =  in Definition 3.1-(ii), thus we obtain 

that 
2 2(1 1 ) nNn e n n eβ α α+ −≥ +  

for all 
*n∈ℕ , which is false. 

Let P  be the set of all functions : [1, )f + → ∞ℝ  

with the property that there is an 0α ≥  such that 

( )f t tα=  for every 0t ≥ . 

Remark 3.5. 

(i) U  is with u.p.d. iff there are h ∈P  and 

.( 1)k const= ≥  such that U  has ( , )h k -decay; 

(ii) U  is with B.V. p.d. iff there are ,h k ∈P  such that 

U  has ( , )h k -decay; 

(iii) U  is with p.d. iff there are h ∈P  and a function 

: [1, )k + → ∞ℝ  such that U  has ( , )h k -decay. 

Proposition 3.6. 

If the evolution operator U  has u.p.d. then it is with 

u.e.d. 

Proof.  

It is immediate from Definition 2.1 and Definition 3.1, 

using the fact that the function ( ) tt e tϕ =  is 

nondecreasing on [1, )+∞ .                          □ 

Proposition 3.7. 

If the evolution operator U  has p.d. then it is with e.d. 

Example 3.8. 

(Evolution operator with e.d and without p.d) We consider 

the function u  and the evolution operator U  on X  

defined as in Example 2.4. 

It is obvious that U  has e.d. If we suppose that U  is 

p.d. then there exist 1N ≥  

, 0α > , and a function : [1, )k + → ∞ℝ  such that 

( ) ( ) ( )s tNk s u t e s t u s eα α−≥  

for all 0 1t s t≥ ≥ = . 

Then for 2s =  and 1 ( 2)t n n n= + ≥  we obtain a 

contradiction. 
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Remark 3.9. 

An evolution operator which is with u.e.d. (and hence 

B.V.e.d. and e.d.) which is not p.d. (and hence neither 

B.V.p.d. nor u.p.d.). This fact is illustrated by the following 

example. 

Example 3.10. 

We consider on X = ℝ  the evolution operator 
( )( , ) t sU t s x e x− −= . 

Clearly, U  is with u.e.d. If we suppose that U  is p.d. 

then there exist 1N ≥ , 0α > , 0 1t ≥  and a function 

: [1, )k + → ∞ℝ  such that 

( ) s tNk s e t s eα α≥  

for all 0t s t≥ ≥ . 

Then for 0 1s t= +  and t → ∞  we obtain a 

contradiction. 
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