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Abstract 

Dengue fever and Leptospirosis (rat fever) are two of the most common zoonotic diseases in countries with tropical or 

subtropical climates. Both these diseases can develop into an epidemic situation. Many similar characteristics such as the 

variation of incidence with climatic variables and comparable clinical manifestation in the diseases can be seen in dengue and 

rat fever. The life threatening nature of the two diseases and the widespread nature of the diseases across Sri Lanka, have 

caused much concern amongst the society. This study was carried out with the objective of determining the bivariate 

distribution of the counts of dengue fever and rat fever, and identifying the determinants with regard to climatic factors. 

(Rainfall, humidity, temperature and their first two lag values). Generalized linear mixed models (GLMM) within the 

‘Glimmix’ procedure on ‘SAS’ software was used to model the incidence of the two diseases. The study was based on data of 

the counts of the two diseases and the climatic variables obtained from three districts of the Western province of Sri Lanka, for 

the period year 2010- year 2016. This study showed that the bivariate modelling of the incidence of dengue fever and rat fever 

could be adequately done using a GLMM with a Negative Binomial distribution. A cluster effect was assumed within districts. 

Responses were also believed to be correlated over time. The correlation structure was accommodated using an autoregressive 

procedure of order one. Rainfall and its 2
nd

 lag and the 2
nd

 lag of humidity were associated with dengue fever, while the 2
nd

 lag 

of humidity were associated with rat fever, in the joint model. Further, both these diseases showed a changing pattern over 

time. The internal and external validation showed that the model predicts well. 
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1. Introduction 

1.1. Relationship Between Dengue Fever and 

Leptospirosis and the Meteorological 

Variables 

Both dengue fever and rat fever are dependent on climatic 

factors. These diseases have been found to be associated with 

variables such as rainfall, temperature and humidity. Global 

climatic change is predicted to accelerate over the next few 

decades. An increased frequency, intensity and duration of 

extreme climatic events is more likely, hence affecting the 

transmission of dengue fever and rat fever. Thereby, this 

becomes a global public health priority. Improved 

understanding of the relationship that these two diseases have 

with the climate is an important step towards finding ways to 

mitigate the impact of them on communities. [22, 24, 14]. 

The relationship that dengue fever and rat fever have with 

climatic variables, have been analysed in a univariate manner 

by many researchers in the past. [17, 12, 23, 25], have shown 

that rainfall, temperature and humidity and their lag terms 

play an important role in the incidence of both diseases. 

Favourable temperature for mosquito growth may accelerate 

the metabolic process in the Aedes mosquitoes. Low 
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humidity causes mosquitoes to feed more freequently to 

compensate for the dehydration. Rainfall influences the 

density of the mosquitoes by increasing their breeding places 

[2]. Thus, incidence of dengue fever is influenced by the 

climatic factors. [20] has indicated that, increase of the 2
nd

 

lag of rainfall caused the incidence of rat fever to rise. A 

study conducted in Reunion islands showed a significant 

positive correlation between temperature recorded 0, 1 and 2 

months previously and the monthly number of rat fever 

patients [4]. A study conducted in Sri Lanka has shown the 

relationship that the incidence of rat fever has with rainfall, 

relative humidity and temperature. [3] 

1.2. Medically Plausible Association 

Between Dengue Fever and Rat Fever 

Dengue and Leptospirosis are two deceases with many 

common factors. Both diseases are endemic in countries with 

subtropical or tropical climates and have epidemic potential. 

Throughout the year cases of dengue and leptospirosis were 

seen. The incidence of both diseases peaks during the 

monsoon, leading to concurrent epidemics. The clinical 

manifestations of leptospirosis and dengue range from a mild 

self-limiting febrile illness to a severe and potentially fatal 

illness. When acute co-infection is present clinical diagnosis 

becomes quite challenging. Physicians who treat, face this 

challenge due to the vast overlapping spectrum of 

symptomatic manifestations of dengue and leptospirosis. [31] 

Both diseases show similar clinical manifestations during 

the initial phase. It is expected that acute dual infections may 

occur due to simultaneous transmission during the rainy 

season. Such co-infections have been reported rarely as an 

uncommon occurrence. However, the results of the study 

done by [29] show that co-infections are not uncommon in 

Chandigarh and suburbs of India, but rather the diagnosis of 

leptospirosis is often overshadowed as outbreaks of dengue is 

common and for longer periods as compared to leptospirosis. 

During a confirmed Leptospirosis outbreak a reverse scenario 

may occur. Dual infection may possibly change the clinical 

spectrum to a more prominent one, presenting a diagnostic 

dilemma. [19, 29] 

The above facts suggests medical plausibility of 

coinfection but no statistical studies have been done on this. 

Therefore, a bivariate model should be used in this study. 

1.3. Objectives of the Study 

This study was conducted to achieve two main objectives, 

1. To determine the bivariate distribution of the counts of 

dengue fever and leptospirosis. 

2. To identify the determinants of dengue fever and 

leptospirosis. 

1.4. Data for the Study 

The monthly counts of dengue fever and leptospirosis were 

obtained from the Epidemiology Unit, Medical Statistics 

Bureau, Colombo, 10. This data set consists of district-wise 

details (Colombo, Gampaha and Kalutara, all in the Western 

province) of dengue and leptospirosis patients reported from 

private and government hospitals during the period 2010 -

2016. The districts were selected based on the count of 

patients of the two diseases. 

Climatic data were obtained from the Meteorology 

Department, Colombo 7. The data set consists of three 

climatic variables, total rainfall for the month (mm), mean 

relative humidity for the month (%) and mean temperature 

for the month (°C) of the three selected districts for the 

period 2010-2016. First two lag values of each of the climatic 

variables were also considered for the study. 

Annual district wise population data for the period 2010 -

2016 were obtained from the Registrar General’s 

Department, Sri Jayawardenapura Kotte. The final data set 

consists of two response variables, nine climatic variables 

and two random effects and an offset variable. The detailed 

description of the data is given in table 1. 

Table 错误!文档中没有指定样式的文字。. Description of data. 

Variable Notation 

District District 

Year Year 

Month Month 

Count of Dengue CountD 

Count of Rat fever Countrf 

Rainfall (mm) Rain 

Log (rainfall) (mm) Lrain 

Rainfall lag1 (mm) Rainl1 

Rainfall lag2 (mm) Rainl2 

Log (Rainfall) lag1 (mm) Lrainl1 

Log (Rainfall) lag2 (mm) Lrainl2 

Humidity (%) Humid 

Humidity lag1 (%) Humidl1 

Humidity lag2 (%) Humidl2 

Temperature (°C) Temp 

Temperature lag1 (°C) Templ1 

Temperature lag2 (°C) Templ2 

expected number of disease cases Expijk1 (dengue) Expijk2 (rat fever) 

2. Methodology 

Initially the variables for the study were selected based on 

the study objectives, considering the existing literature and 

expert advice. [12],[23]. Based on the findings from [25] and 

other literature, the lag effects of the climatic variables were 

taken into account. Thus the impact of the climatic variables 

in the current month and their first two lag values were used 

in the analysis. 

Having done a descriptive analysis, a modification of the 

Zhang and Boos test was used to assess the association 

between the categorical explanatory variables and the 

response variables in a univariate manner. 

An advanced analysis was done to model dengue and 

leptospirosis counts in a univariate and bivariate manner. The 

data were considered to be clustered within groups (districts). 

Joint modeling was used via ‘Generalized Linear Mixed 

Models’. The estimates were obtained using the PROC 

GLIMMIX procedure in SAS software. An autoregressive 

procedure was used to adjust for the fact that the responses 

were correlated over time within districts. 
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2.1. Generalized Linear Mixed Models (GLMM) 

The general linear mixed model is of the form 

� =  �� + �� + 	                              (1) 

Where y is a (n x 1) column vector, the outcome variable; 

X is a (n x p) design matrix of the p predictor variables; β is a 

(p x 1) column vector of the fixed effects regression 

coefficients. Here Z is the (n x q) design matrix of the q 

random effects; � is a (q x 1) vector of r random effects and ε 

is a (n x 1) column vector of errors (the part of y that is not 

explained by the model). 

In classical statistics � ~ N (0, G) is assumed. Also � is 

considered to have a normal distribution, where G is the 

variance-covariance matrix of the random effects. 

Extending this model to responses from any distribution of 

the exponential family, Generalized Linear Mixed models are 

obtained. These models are of the form 


��|�� =  ���(�� + ��)                         (2) 

Where g (.) is a differentiable monotonic link function and 

g
-1

(.) is its inverse. 

The GLMM contains a linear mixed model inside the 

inverse link function. This model component is referred to as 

the linear predictor, 

� =  �� + ��                                (3) 

The most common residual covariance structure is 

� = ����                                     (4) 

Where I is the identity matrix and ���  is the residual 

variance. This structure assumes a homogenous residual 

variance for all (conditional) observations and that they are 

(conditionally) independent. Other structures can be assumed 

such as compound symmetry or autoregressive. The G 

terminology is common in SAS, and also leads to referring to 

G-side structures for the variance covariance matrix of the 

random effects and R-side structures for the residual variance 

covariance matrix. [10] 

2.2. Fitting a Negative Binomial Model for 

Clustered, time Correlated Data 

Count data in epidemiological studies assumes only non-

negative integer values. (i.e. 0, 1, 2…). If a Normal model is 

fitted, there is a possibility that it will produce negative 

predicted counts. Hence, count data is usually modeled using 

the Poisson distribution, which is characterized by having 

equal mean and variance of the response variable (Yi). 

Thereby, E (Yi) = Var (Yi) =µi. However, in instances where 

over-dispersion is present, i.e. when E (Yi) < Var (Yi), the 

Poisson model will no longer be appropriate. In such 

situations, the Negative Binomial model can be used. The 

Negative Binomial model is denoted by Yi ~ NB (µi, µi+ α 

µi
2
), where E (Yi)= µi, V (Yi)= µi+ α µi

2
 and α controls for the 

over-dispersion. [29] 

Initially, modelling was done using a Poisson model, in 

this study. However, as the data showed signs of over-

dispersion, it was decided to use a Negative Binomial model. 

[25, 29] 

2.3. Offset Variable 

Each geographic unit considered (District) that is prone to 

have dengue and rat fever will have a different population 

size. Therefore an additional parameter known as the ‘offset’ 

will be used to incorporate the rate of the disease reported 

rather than the count. [13], [26]. 

The offset is calculated as follows [13] 

������ =  � � (!"�� �) (�#$�%��& '()!�*  � &+��"�� %"���)   (5) 

This quantity depends on the population size of each 

district for a given year. 

The expected number if everyone has the same exposure 

(i=month, j=year, k=district indexed cell) 

�"�� =  , �"� % ('�/, �"� �#$ ��&          (6) 

(
#$)./0  = (
#$ ��&)./0  ∗  �"��             (7) 

Due to the unavailability of monthly population sizes of 

each district, and using the prior knowledge that the 

population sizes for a given district does not change 

significantly over a period of one year, the same “offset” was 

used for all the months of the year for a given district. 

2.4. The Negative Binomial Regression 

Model (NBP) 

Several parameterizations are available for bivariate 

negative binomial regression. Two well-known models are 

NB-1 and NB-2. [15, 31, 18, 8]. Recently, the functional 

form of NB regression has been extended and introduced as 

NB-P regression, where both NB-1 and NB-2 regressions are 

special cases of NB-P when P=1 and P=2 respectively. [32, 

11]. The advantage of using NB-P is that it parametrically 

nests both NB-1 and NB-2, and therefore, allowing statistical 

tests of the two functional forms against a more general 

alternative. 

The Univariate Negative Binomial-P regression model 

(NB-P) is given by 

$*2�.,4 = 562789:;<=8>;?4
78! 6(:;<=8>;?) A 5 :;<=8>;?

:;<=8>;?9=8A
:;<=8>;? 5 =8

:;<=8>;?9=8A
78

                                      (8) 

Where vi
-1 

= α is the dispersion parameter. The mean and the variance of NBR are E (yi) = µi and var (yi) = vi =(µi+ α µi
2
). 

Bivariate Negative Binomial-P regression model (BNBR-P) can be derived from the product of two NB-P marginals and a 

multiplicative factor parameter. (P is the functional parameter). The probability mass function of BNBR-P is, 
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pr2yE�,yE�4 = F∏ 5H2IJK9LK;<=JK>;M4
IJK! H(LK;<=JK>;M) A 5 LK;<=JK>;M

LK;<=JK>;M9=JKA
LK;<=JK>;M 5 =JK

LK;<=JK>;M9=JKA
IJK�NO� P . �1 + Φ(e�IJ< − cE�)(e�IJ> − cE�)�    (9) 

Where αt, t = 1, 2, are the dispersion parameters. P = 1 or 

2, is the functional parameter, Φ is the multiplicative factor 

(correlation) parameter, and 

cit = E (e
-yit

) = 5 :W;<=8W>;?W
:W;<=8W>;?W9X;<9�A:W;<=8W>;?W

, t = 1, 2 

Note that the most appropriate link function for the 

negative binomial distribution is the log link. [6, 24] 

 

3. Results from the Analysis 

3.1. The Best Univariate Model for Dengue 

Fever 

In the modelling procedure the log of rainfall was used 

instead of rainfall for convergence reasons. 

The parameter estimates, standard errors of the estimates, 

degrees of freedom, t-value and the associated p-value of the 

final model are given in table 2. 

Table 2. Parameter estimates of the best model for dengue fever. 

Effect year Estimate Standard error Degrees of freedom t value Pr > |t| 

Intercept 
 

-8.6349 1.838 2 -4.7 0.0424 

lrainl2 
 

0.1655 0.02215 455 7.47 <.0001 

Temp 
 

0.01316 0.04708 455 0.28 0.7800 

Lrain 
 

-0.04432 0.0222 455 -2 0.0465 

lrainl1 
 

0.07819 0.0187 455 4.18 <.0001 

templ1 
 

0.2021 0.04718 455 4.28 <.0001 

Humid 
 

-0.03825 0.01049 455 -3.65 0.0003 

Year 2010 0.2119 0.06871 455 3.08 0.0022 

Year 2011 0.05857 0.07026 455 0.83 0.4049 

Year 2012 0.1847 0.07116 455 2.6 0.0098 

Year 2013 0.1249 0.07059 455 1.77 0.0775 

Year 2014 0.1883 0.06939 455 2.71 0.0069 

Year 2015 0.08997 0.0698 455 1.29 0.1981 

Year 2016 0 . . . . 

humidl2 
 

0.02325 0.009883 455 2.35 0.0191 

Note: 

i. Year 2016 was considered to be the base level 

ii. Estimation technique used was residual pseudo-likelihood (RSPL) [27] 

Interpretation of the Parameter Estimates of the Best Univariate Model for Dengue Fever 

The fitted model is given in equation (10). 

Y �2µ./04 =  −8.6349 + 0.1655 (�*"+'�2)./0  + 0.01316 (��)$)./0  −  0.04432 (�*"+')./0  +  0.07819(�*"+'�1)./0 +
 0.2021(��)$�1)./0  − 0.03825 (ℎ()+&)./0 + 0.2119 (��"*�e�e) +  0.05857(��"*�e��) +  0.1847(��"*�e��) +

0.1249 (��"*�e�f) + 0.1883(��"*�e�g) + 0.08997 (��"*�e�h) +  0.02325(ℎ()+&�2)./0              (10) 

µ./0= Expected number of dengue patients in the i
th 

month, 

j
th 

year and k
th 

district. The parameter estimates give the 

contribution of the explanatory variables to the log of the 

expected number of dengue fever cases recorded in each 

month, year and district. [13]. The parameter estimates which 

are significant at the 5% level of significance are interpreted 

below. Only the variable ‘year’ was considered as a discrete 

factor from the fixed effects. The variable year consists of 7 

levels with the base level being 2016. 

Effect of humidity on the response 

The coefficient of humidity was negative, indicating that 

the increase in the humidity will lead to a decrease in the 

count of dengue fever patients. Suppose the humidity of a 

particular district, year and month increases by 1 unit while 

all other effects remain constant and the expected number of 

dengue cases before and after this increment are µijk1 and µijk2 

respectively. 

Y �2µ./0�4 =  �e  + ��(�*"+'�2)./0  +  ��(��)$)./0 + �f(�*"+')./0 + �g(�*"+'�1)./0  +  �h(��)$�1)./0+ �i(ℎ()+&)./0 +
 �j(��"*�e�e) + �k(��"*�e��) +  �l(��"*�e��) + ��e(��"*�e�f) + ���(��"*�e�g) + ���(��"*�e�h) +  ��f(ℎ()+&�2)./0 (11) 

Y �2µ./0�4 =  �e  + ��(�*"+'�2)./0  +  ��(��)$)./0 + �f(�*"+')./0  + �g(�*"+'�1)./0  +  �h(��)$�1)./0+ �i(ℎ()+& +
1)./0 + �j(��"*�e�e) + �k(��"*�e��) + �l(��"*�e��) + ��e(��"*�e�f) + ���(��"*�e�g) + ���(��"*�e�h) +

 ��f(ℎ()+&�2)./0                                                                 (12) 

log p=8qr>
=8qr<s = �i = −0.03825 by the calculation (12) – (11) 
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tµ./0�µ./0�u = exp(�i) = exp(−0.03825) = 0.9625 

µ./0� = 0.9625(µ./0�                                                                               (13) 

This result implies that the expected number of dengue 

fever patients of a particular district, month and year decrease 

by a ratio of approximately 0.96, as a result of 1 unit 

increment in the humidity of that district, month and year. 

Using similar calculations, it was found that, 

The expected number of dengue patients of a particular 

district, month and year, 

1. increase by a ratio of 1.18, as a result of 1 unit 

increment of log(2nd lag of rainfall) [increment of 

2.718 units of 2nd lag of rainfall] of that district, month 

and year 

2. decrease by a ratio of 0.96, as a result of 1 unit increment 

of log(rainfall) of that district, month and year 

3. increase by a ratio of 1.08, as a result of 1 unit 

increment in the log(1st lag of rainfall) of that district, 

month and year 

4. increase by a ratio of 1.22, as a result of 1 unit 

increment in the 1st lag of temperature of that district, 

month and year. 

5. increase by a ratio of 1.02, as a result of 1 unit 

increment of the 2nd lag of humidity of that district, 

month and year 

6. expected number of dengue patients of a particular 

district and month from the year 2010, 2012 and 2014 

are 1.24, 1.20 and 1.21 times higher than that in the year 

2016 respectively. 

3.2. Best Univariate Model for Rat Fever 

The parameter estimates, standard errors of the estimates, 

degrees of freedom, t-value and the associated p-value of the 

final model are given in table 3. 

Table 3. Parameter estimates of the best model for rat fever. 

Effect year Estimate Standard error Degrees of freedom t value Pr > |t| 

Intercept 
 

-2.9956 0.2854 2 -10.5 0.0090 

lrainl2 
 

0.1167 0.01933 461 6.04 <.0001 

Year 2010 -0.05865 0.06494 461 -0.9 0.367 

Year 2011 -0.08041 0.06578 461 -1.22 0.2222 

Year 2012 -0.2514 0.06785 461 -3.71 0.0002 

Year 2013 -0.1447 0.06717 461 -2.15 0.0317 

Year 2014 -0.1678 0.06677 461 -2.51 0.0123 

Year 2015 -0.1177 0.0668 461 -1.76 0.0786 

Year 2016 0 . . . . 

Note: 

i. Year 2016 was considered to be the base level 

ii. Estimation technique used was residual pseudo-likelihood (RSPL) [28] 

Interpretation of the Parameter Estimates of the Best Univariate Model for Rat Fever, 

The fitted model is given in equation (14). 

Y �2µ./04 =  −2.9956 + 0.1167(lrainl2)./0  − 0.05865 (year_2010) − 0.08041(year�e��) − 0.2514(year�e��) −
0.1447(year�e�f) − 0.1678(year�e�g) − 0.1177(year�e�h)                                       (14) 

µ./0= Expected number of dengue patients in the i
th 

month, 

j
th 

year and k
th 

district. 

The parameter estimates gives the contribution of the 

explanatory variables to the log of the expected number of rat 

fever cases recorded in each month, year and district. [13] 

Using a similar method to what was used in section 3.1 the 

parameter estimates that are significant at 5% level of 

significance were interpreted as follows, 

The expected number of rat fever patients of a particular 

district, month and year increase by a ratio of 1.12, as a result 

of 1 unit increment of the log (2
nd

 lag of rainfall) of that 

district, month and year 

The expected number of rat fever patients of a particular 

district and month from the year 2012, 2013 and 2014 are 

0.78, 0.87 and 0.85 times lower than that in the year 2016 

3.3. Best Bivariate Model for Dengue Fever 

and Rat Fever 

The parameter estimates, standard errors of the estimates, 

degrees of freedom, t-value and the associated p-value of the 

final model are given in table 4. 

Table 4. Parameter estimates of the best bivariate model for dengue fever and rat fever. 

Effect Distribution Estimate Standard error Degrees of freedom t value Pr > |t| 

Dist NEGBIN1 -6.0638 1.1313 461 -5.36 <.0001 

Dist NEGBIN2 1.1578 1.2224 461 0.95 0.3441 

lrainl2*dist NEGBIN1 0.1866 0.03947 461 4.73 <.0001 
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Effect Distribution Estimate Standard error Degrees of freedom t value Pr > |t| 

lrainl2*dist NEGBIN2 0.07768 0.0423 461 1.84 0.0669 

humidl2*dist NEGBIN1 0.03619 0.01495 461 2.42 0.0159 

humidl2*dist NEGBIN2 -0.05223 0.01616 461 -3.23 0.0013 

lrain*dist NEGBIN1 -0.0795 0.03303 461 -2.41 0.0165 

lrain*dist NEGBIN2 0.05455 0.03351 461 1.63 0.1042 

Note 

i. dist = distribution 

ii. Estimation technique used was Laplace maximum-likelihood [28] 

3.3.1. Interpretation of the Parameter Estimates of the Bivariate Model for Dengue Fever and 

Rat Fever 

The model selected can be represented as, 

� � 5{8qr<{8qr>A  =  −6.0638 (&+��1) +  1.1578(&+��2) +  0.1866(�*"+'�2 ∗ &+��1)./0 + 0.07768 (�*"+'�2 ∗ &+��2)./0 + 0.03619 (ℎ()+&�2 ∗
&+��1)./0 − 0.05223 (ℎ()+&�2 ∗ &+��2)./0 − 0.0795 (�*"+' ∗ &+��1)./0 +  0.05455(�*"+' ∗ &+��2)./0 (15) 

where, dist1= Negative Binomial 1 and dist2=Negative 

Binomial 2 

5{8qr<{8qr>A = Expected number of patients of the two diseases 

in the i
th

 month, j
th 

year and k
th

 district. (1-dengue fever, 2-rat 

fever) 

The parameter estimates give the contribution of the 

explanatory variables to the joint distribution of the number 

of dengue and rat fever patients recorded in each month, year 

and district. [13] 

Interpretation of the parameter estimates that are 

significant at the 5% level of significance of the joint model 

should be carried out for the two marginal models separately. 

Using a similar method to what was used in section 3.1, 

the interpretation of the two marginal models separately are 

as follows, 

According to the results from the Negative Binomial 1 

model, the expected number of dengue fever patients of a 

particular district, month and year, 

1. increase by a ratio of 1.21, as a result of 1 unit 

increment of the log (2
nd

 lag of rainfall) of that district, 

month and year 

2. increase by a ratio of 1.04, as a result of 1 unit 

increment of the 2
nd

 lag of humidity of that district, 

month and year 

3. decrease by a ratio of 0.92, as a result of 1 unit 

increment of the log(rainfall) for that district, month and 

year. 

According to the results from the Negative Binomial 2 

model, the expected number of rat fever patients of a 

particular district, month and year, 

1. decrease by a ratio of 0.95, as a result of 1 unit 

increment of the 2
nd

 lag of humidity of that district, 

month and year. 

3.3.2. Residual Analysis of the Bivariate 

Model 

It is important to do a residual analysis to check whether 

the model developed is suitable. Therefore, the residual 

analysis was performed by plotting the residuals against the 

exponent of the predicted value. 

The graph in figure 1 indicates that majority of the 

residuals are between -1 and 2. Only 6 residuals are above 

the value 2. The majority of the points are evenly distributed 

vertically around 0 and there is no clear pattern in them. 

Therefore, it can be said that the residual analysis suggests 

that the bivariate model developed is adequate. 

 

Figure 1. Graph of the residuals vs exp (predicted values). 
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4. Validation 

4.1. Constructing the Receiver Operator 

Characteristic Curve 

The rate of occurrence of dengue fever is much higher than 

the rate of occurrence of rat fever. Therefore dengue fever was 

used to identify the optimal cut-off point for classification. The 

variable ‘count of dengue fever’ was converted into a binary 

variable. This was done by classifying the count of dengue 

fever patients into two groups using the mean (532). (If the 

count of dengue<532, then it was coded as 1 and if the count 

of dengue >532, then it was coded as 2). Then a Logistic 

model was used to model the relationship between the count of 

dengue fever and the other variables that were significant in 

the bivariate model constructed in section 3.3 and the count of 

rat fever (explanatory variables including the count of rat 

fever), with the objective of developing a classification rule. 

Then using the logistic model developed, predictor values �|  

for the existing data set was obtained. If �|>mean (532), then 

the unit is said to have a high count of dengue, if not the unit is 

said to have a low count of dengue. Using threshold values 

ranging from 0 to 1, the sensitivity and specificity were 

calculated for each of these cases. The analysis was done using 

SAS 9.2. 

}�'�+�+~+�� = ����� ��X�.��X� ��.�� ��.�� �.�� �� .�� �X�X�������� �� �X���X �X�X�
����� ����X� �� ��.�� �.�� �� .�� �X�X�������� �� �X���X �X�X�                               (16) 

}$�%+�+%+�� = ����� ��X�.��X� �� �� ��.�� �.�� �� �� �X�X�������� �� �X���X �X�X�
����� ����X� �� ��.�� �.�� �� �� �X�X�� ������ �� �X���X �X�X�                                    (17) 

When sensitivity increases specificity decreases, and vice 

versa. In an ideal classification test both sensitivity and 

specificity should be high [9] However, in practice the ideal 

situation rarely occurs, especially in medical related studies 

[27]. Therefore, based on the objective of the classification 

test a cut-off point should be selected. 

The main purpose of developing a classification rule in this 

study is to identify the areas that have a high rate of occurrence 

of the disease so that necessary measures could be taken by the 

relevant authorities. This is evaluated using the sensitivity 

associated with the classification rule. Hence, the sensitivity 

should be high. On the other hand specificity should also be of 

a value that is not too low, since incorrectly classifying a unit 

as one with a high level of occurrence of the disease will result 

in a waste of time and resources in conducting further 

investigations. [27]. Therefore in order to satisfy both criteria, 

cut-off probability of 0.55097 was chosen as the best cut-off 

point or the best trade off. It can be seen that the selected cut 

off gives sensitivity (True positive rate - TPR) of 

approximately 80% and specificity (True Negative Rate - TNR) 

of 52%. That is probability of correctly identifying units with 

high level counts of dengue fever is 0.80 while correctly 

identifying units with low counts of dengue fever is 0.52. The 

area under the curve (AUC) is 0.711 and it can be interpreted 

as ‘acceptable discrimination’ according to the rule of thumb 

by Hosmer & Lemeshow, 2000. 

The logistic model used to identify the probability of the 

point that gives the best trade off includes many climatic 

variables that are of continuous type, hence the model 

becomes complex. Computing the value that should be used 

to classify the count of rat fever as high or low becomes 

tedious with the presence of other climatic variables. 

Therefore, the probability value that was identified using the 

more accurate model is applied to a simpler logistic model. 

The simpler logistic model includes only the count of rat 

fever as an explanatory variable and the binary variable 

created for the count of dengue fever was used as the 

response variable. Table 5 gives the parameter estimates of 

the fitted logistic model. 

Table 5. Parameter estimates of the simpler logistic model. 

Parameter Estimate 

Intercept -0.0962 

Count of rat fever 0.0191 

Using these parameter estimates an approximation to the 

value that could be used to classify the count of rat fever as 

high or low was computed as follows, 

� � p 0.55097
1 − 0.55097s = 0.20459 

e.�eghl9e.eli�
e.e�l� = 15.75                         (18) 

Hence, it was decided to use 15.75 to classify the count of 

rat fever as high or low. That is: if the count of rat fever for a 

given unit is < 15.75, it is classified as 1, if the count of rat 

fever for a given unit is > 15.75, it is classified as 2. 

4.2. Internal Validation 

Observed and the predicted counts from the fitted bivariate 

negative binomial model were computed in order to validate 

the fitted model using the existing data set. (2010 – 2016). 

Internal predictions for the existing data set were calculated 

using the software SAS 9.2. The classification of the 

observed and the predicted values were done in the following 

manner, 

1. If the count of dengue <532 and count of rat fever 

<15.75 then classified as 1 

2. if the count of dengue <532 and count of rat 

fever >=15.75 then classified as 2 

3. If the count of dengue >=532 and count of rat fever 

<15.75 then classified as 3 

4. If the count of dengue >=532 and count of rat 

fever >=15.75 then classified as 4 

Internal Predictive Accuracy of the Final Bivariate Model 

is as follows, 
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Table 6 gives the prediction results for the internal validation. 

�'��*'"� $*�&+%�+~� "%%(*"%�  � �ℎ� ) &�� =  (��j9hi)
�h� X 100 = 72.6% ~ 73%                     (19) 

Table 6. Internal predictive accuracy of the final bivariate model. 

Predicted 

results 

 
Actual results 

Total 
2 4 

1 9 4 13 

2 127 18 145 

3 5 20 25 

4 13 56 69 

Total 154 98 252 

4.3. External Validation 

In order to test the predictive accuracy of the developed 

model, it is important to test the model on a new set of data 

(external data). Therefore, a new set of data was obtained 

from the epidemiology unit and the meteorology department 

of Sri Lanka for the first 8 months of 2017. 

External predictions of the developed model was 

computed using the software SAS 9.2. The classification of 

the observed and the predicted counts were done in the same 

way as before (section 6.4) 

External Predictive Accuracy of the Final Bivariate Model 

is as follows, 

Table 7 gives the prediction results for the external 

validation. 


#��*'"� $*�&+%�+~� "%%(*"%�  � �ℎ� ) &�� =  �j
�g X 100 = 70.83% ~ 71%                          (20) 

Table 7. External predictive accuracy of the final bivariate model. 

Predicted results 

 
Actual results 

Total 
3 

2 1 1 

3 17 17 

4 6 6 

Total 24 24 

Since both internal and external validation methods 

indicate that the prediction accuracy of the model is at a 

reasonably high level, it could be said that the final bivariate 

model for dengue fever and rat fever is performing well. 

5. Discussion 

5.1. Comparison of Univariate and Bivariate 

Models Based on Akaike’s Information 

Criterion (AIC) and Bayes Information 

Criterion (BIC) 

Laplace maximum-likelihood estimation method was used 

to calculate the AIC’s and BIC’s of all three models. A model 

with a lower AIC and BIC is considered to be a better model. 

[1]. Table 8 and 9 gives these results respectively. 

Table 8. AIC of the models. 

Model AIC Total AIC 

Univariate dengue fever 6547.66 
10555.43 

Univariate rat fever 4007.77 

Bivariate dengue and rat fever 5623.65 5623.65 

Table 9. BIC of the models. 

Model BIC Total BIC 

Univariate dengue fever 6530.35 
10527.3 

Univariate rat fever 3996.95 

Bivariate dengue and rat fever 5612.83 5612.83 

The bivariate model shows a significant reduction in AIC 

and BIC than the addition of the two AIC’s and BIC’s 

respectively of the univariate models. The reduction in AIC is 

4931.78 (10555.43 - 5623.65), while the reduction in BIC is 

4914.47 (10527.3 - 5612.83). Therefore, the bivariate model 

is more suitable than having two univariate models. 

5.2. Comparison of Univariate and Bivariate 

Models Based on the Stand Errors of the 

Variance Parameter 

Table 10 gives the results. 

Table 10. Comparison of models using the standard errors of the covariance parameters. 

Covariance parameter S. E in univariate dengue model S. E in univariate rat fever model S. E. in bivariate model 

Variance 0.01178 0.05074 0.008057 

 

The standard error of the variance is lower in the joint 

model than in the two univariate models. Therefore the 

bivariate model is more suitable than having two univariate 

models. [7] 

AIC, BIC and the standard error of the variance of the 

distribution suggests that the bivariate model is better than 

having two univariate models. 

Univariate modelling of dengue fever 

There is an increment in the incidence of dengue fever 

when the 1
st
 and 2

nd
 lag of log (rainfall) increases. The results 

of [25], also suggests that the incidence of dengue escalated 

with the increase of rainfall of the previous two months. The 

present study shows a decrease in the incidence, when log 

(rainfall) of the current month increases. [2] also shows 

similar results, where dengue fever has a negative correlation 

with rainfall. Heavy rainfall may not provide favourable 

conditions to mosquitoes as it washes away the mosquito 

eggs and larvae, thus reducing the density. 

Increase in the humidity of the current month lead to a 

decrease in the incidence of dengue. [2] also shows that there 
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is a negative correlation between dengue fever and humidity. 

Low humidity causes mosquitoes to feed more frequently to 

compensate for dehydration. Thereby, a reduction in the 

incidence of dengue occurs when humidity increases. The 

current study shows that the increment in the 2
nd

 lag of 

humidity leads to an increase in the incidence of the disease. 

A positive correlation between the 2
nd

 lag of humidity and 

the incidence of dengue fever was seen in a study conducted 

in China. [16]. Thus, the results of the current study are in 

line with the results presented in the literature. 

The incidence of dengue fever increases when the 1
st
 lag 

of temperature increases. [25], also shows that the incidence 

of dengue fever increases when the temperature of the 

previous month increases. Temperature is known to affect 

dengue incidence by exerting a sizeable influence on the 

population dynamics of the dengue mosquitoes. 

Temperature can impact the conditions for egg laying, 

stimulation of egg hatching, and the abundance of Aedes 

larvae and pupae. [21] 

Univariate modelling of rat fever 

The results of the current study reveal that the incidence of 

rat fever increases when the log (2
nd

 lag of rainfall) increase. 

A study conducted in Reunion Islands found a significant 

positive correlation between Leptospirosis cases and monthly 

cumulated rainfall and the highest correlation was found with 

average monthly rainfall recorded two months previously. 

[24], [5]. The study conducted by [24] has not found any 

statistically significant correlation between climatic factors 

and the incidence of dengue. However, a significant 

correlation has been found between rainfall and Leptospirosis 

in majority of the districts with high incidence rates. The 

districts considered in the current study are ones with high 

incidence rates of Leptospirosis. Thus, indicating that the 

results of the two studies tally. This fact suggests that, 

rainfall plays a more important role in Leptospirosis 

epidemics than the endemic transmission in Sri Lanka. [20], 

has shown that increase in the 2
nd

 lag of rainfall causes the 

incidence of the disease to rise. “The lag period of 1–2 

months between heavy rainfall and cases is consistent with 

the probable effect of flooded land and water-soaked soils on 

leptospiral organism survival (1 to 2 months) and an average 

incubation period for leptospirosis of 1 to 3 weeks. In many 

parts of the world heavy rainfall and flooding can lead to 

outbreaks of leptospirosis, especially in tropical countries 

since transmission is often indirect in these areas”. [20] 

Bivariate modelling of dengue fever and rat fever 

According to the results from the Negative Binomial 1 

model, the expected number of dengue fever cases of a 

particular district, month and year increases when the log (2
nd

 

lag of rainfall) and 2
nd

 lag of humidity increase. The 

incidence of dengue fever decreases when the log (rainfall) 

increases. [25], has also shown that the incidence of dengue 

fever increases when the 2
nd

 lag of rainfall increases. A 

positive correlation between the 2
nd

 lag of humidity and the 

incidence of dengue fever was seen in a study conducted in 

China. [16] 

According to the results from the Negative Binomial 2 

model, the expected number of rat fever cases of a particular 

district, month and year decreases when the 2
nd

 lag of 

humidity increase. Although previous studies that modelled 

the incidence of rat fever (univariate) showed considerable 

correlations between the number of Leptospirosis cases and 

rainfall, relative humidity and temperature [3], when the 

bivariate model is considered only the 2
nd

 lag of humidity 

becomes significant with respect to the incidence of rat fever. 

The above study [3] pertains to only the Gampaha district 

and has considered only one year’s data, whereas the current 

study has considered all three districts of the western 

province for 7 years. Thus, this factor would have 

contributed towards the differences in results. [24], also 

presents that temperature does not have a significant impact 

on the incidence of rat fever, which tallies with current 

study’s result. 

Previous studies suggest to use an autoregressive structure 

to account for the correlation over time of observations of a 

given district [17], [25]. However, results of the current study 

showed that the G matrix of the time aspect gives very small 

correlation between months, indicating that it was not 

necessary to use an AR (1) adjustment for this problem [26]. 

This would have made the analysis simpler and avoided the 

huge 12x12 matrix. 

The internal and external validations for the bivariate 

model developed indicated that the model predicts well. 

6. Conclusion 

Incidence of dengue fever and rat fever can be jointly 

modelled using a negative binomial distribution. 

Joint modelling yields better results than modelling the 

two diseases in a univariate manner. 

Internal and external predictive accuracy of the joint model 

is high. 

Cluster effect should be considered as the incidence rate 

changes according to locality. 

Rainfall and its 2
nd

 lag and the 2
nd

 lag of humidity is 

significantly associated with the incidence of dengue fever 

according to the joint model. 

2
nd

 lag of humidity is significantly associated with the 

incidence of rat fever according to the joint model. 

Climatic conditions that lead to high levels of incidence of 

the two diseases can be identified using the model developed. 

Resources could be allocated in a more effective way to 

control the incidence of the two diseases by using the model 

developed. 
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