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Abstract 

We have investigated the motion of an infinitesimal body in the elliptic restricted three-body problem (ER3BP) when both 

primaries are sources of radiation as well as oblate spheroids with oblateness up to zonal harmonic J4. We highlight the effects 

of the said parameters on the locations of the collinear equilibrium points of 61 CYGNI and STRUVE 2398. It is also found 

that under the combined effect of the zonal harmonics (J2 & J4), the collinear points L1 and L2 move away from the bigger 

primary with the increase in oblateness, while L3 moves closer to the primaries. It is also seen that in the case of the binary 

system 61 Cygni, the effect of the zonal harmonics (J2 & J4) on the positions of L1 and L3 is not observable when compared 

with the binary system Struve 2398. It is further observed that the oblateness does not change the nature of stability of collinear 

points and they remain unstable. 
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1. Introduction 

The restricted three-body problem (R3BP) with the 

assumptions of the sphericity of the participating bodies and 

circularity of their orbits has continued to fascinate and 

intrigue researchers. Two spherical massive bodies 

(primaries) move in circular orbits under their mutual 

gravitational attraction influencing but not being influenced 

by the third massless body. In such a system, five co-planar 

equilibrium points exist; three collinear with the line joining 

the primaries and two form equilateral triangles with the 

primaries. The collinear points have been shown to be 

generally unstable, while the triangular points are 

conditionally stable [1-5] 

When the orbits of the primaries are elliptic, called the 

elliptic restricted three-body problem (ER3BP), a non-

uniformly rotating-pulsating coordinate system is commonly 

used. This new coordinate system has the felicitous property 

that, the positions of the primaries are fixed; however, the 

Hamiltonian is explicitly time-dependent [6]. Such an 

oscillating coordinate system has been introduced by using 

the variable distance between the primaries as a unit of length 

of the system by which distances are divided. [7] studied the 

effect of a small perturbation in the coriolis force on the 

stability of the triangular points taking the centrifugal force 

as constant. He concluded that the collinear points remain 

unstable and the coriolis force is a stabilizing force when 

considering the stability of triangular points. He further 

obtained a relation between the value of the critical mass 

parameter ��  and the change �  in the coriolis force as; �� = �� + ��	√���  

The work of [7] was extended by [1] to include the effect 

of perturbations � and �
 in the coriolis and centrifugal forces 

respectively and found that the collinear points remain 

unstable. They also obtained a relation for triangular points 

changes �, �
and �� as: �� = �� + ����	���	����√��  
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In his study of linear stability of triangular equilibrium 

points of the photogravitational restricted three-body problem 

when the more massive primary (Sun) is a source of radiation 

and the smaller one is an oblate spheroid, [8] showed that the 

triangular points have long or short-periodic retrograde 

elliptical orbits and the value of the critical mass parameter 

decreases with an increase in oblateness and radiation force. 

[9] considered the bigger primary as an oblate spheroid and 

the smaller primary as a triaxial rigid body in the R3BP; they 

confirmed that the triangular points have long or short 

periodic elliptical orbits in the same range of the mass 

parameter and the nature of collinear and triangular points 

remain unstable and stable respectively for some values of 

mass parameters. [10] considered both primaries as triaxial 

rigid bodies as well as sources of radiation in their study of 

the existence and stability of libration points. They 

maintained that the three collinear points are unstable and the 

two triangular points are stable for certain values of mass 

parameter. 

A number of studies have been carried out on the collinear 

liberation points of the circular restricted three-body problem 

(CR3BP). [11] examined the existence and linear stability of 

liberation points in the axisymmetric restricted three-body 

problem with radiating primaries and found that, the collinear 

points remain unstable. Collinear points exhibiting characters 

of stability were studied by [2] and [12]. They admit that, the 

inner collinear point can be stable under certain conditions. 

In the same analogy, [13] stated that, the collinear points can 

be stable in the Lyapunov sense in the case of a fourth order 

resonance in the presence of the radiation of both primaries. 

A number of researchers have affirmed that the collinear 

points are usually unstable [14-18]. [19] examined the 

equilibrium points and their stability in the R3BP with 

oblateness and variable masses. They confirmed that, the 

collinear points are stable due to k (kappa). [14] investigated 

the effects of the luminosity and oblateness of both primary 

bodies on the collinear libration points of the binary systems 

Achird, Luyten 726-8, Kruger 60, Alpha Centauri AB and Xi 

Bootis moving in elliptic orbits around their common centre 

of mass. Also, [15] investigated the effect of the triaxiality of 

the bigger primary on the collinear libration points of binary 

pulsars. They found that, the positions of collinear points are 

affected by the eccentricity, oblateness, radiation and 

triaxiality factors: These points however remain unstable. 

Our aim is to study the effect of oblateness up to zonal 

harmonic J4 on the positions and linear stability of the 

collinear libration points. We have chosen two binary system 

(61Cygni and Struve 2398) for our numerical computations. 

This paper is organised in six sections; section 1 is the 

introduction; section 2 deals with the equations of motion; 

section 3 focuses on the positions of collinear points. The 

stability of collinear points is examined in section 4; while 

section 5 deals with the numerical applications, section 6 

focuses on discussion and conclusion. 

2. Equations of Motion 

The equations of motion of an infinitesimal mass, in the 

ER3BP with oblate as well as luminous primaries, can be 

written in the dimensionless-pulsating coordinate system 

(�,	�, �) following [20] as; 

�ʺ - 2 �ʹ = Ω� , �ʺ +2�ʹ = Ω� , �ʺ	 = Ω               (1) 

Ω = �(��"#)% #& '�� (�� + ��) + 	 �(# )(��*)+%,% + (��*)-%+%�,%� −
	�/ (��*)-#+%,%0 +	*+#,# +	*1%+#	�,#� −	�*1#+#/,#0 23            (2) 

The mean motion, n, is given by 

n� = ��5	6#�%/#8	(	��	6#) '1	 + ��:� + ��;� − �</ :� − �</ ;�3=�8 =1 +�6#� + �-%� + �1%� − �<-#/ − �<1#/ >                  (3) 

and 

?�� = (� + �)2
 + �� +	��, ?�� = (� + � − 1)2

 + �� +	��, ��=	−	�, ��= 1 − 	�                            (4) 

	0 < 	� = 	 B#B%5B# < ��                           (5) 

Here, 	m�, m�  are the masses of the bigger and smaller 

primaries positioned at the points (�D ,0,0),i=1,2; , q�, q�  are 

their radiation factors; ?D , are their distances from the 

infinitesimal mass; respectively; a and e are the semi-major 

axis and eccentricity of the orbits respectively; AI =	J�I	R��	, BI =	 J�̅I	R��	AI, BI ≪ 1	(i = 1,2)	 characterize the 

zonal harmonic oblateness of the bigger and smaller 

primaries whose mean radii are	R�	and	R�	respectively. 

3. Location of Collinear Points 

The equilibrium points are the solutions of the equations Ω� = Ω� = Ω = 0, which yield 

� − �(# )(��	*)(��	�%),%	� [� + �(��	*)(��	�%)�,%	0 :�[� −	�<(��	*)(��	�%)/,%	\ :�[�	 + *(��	�#)+#,#	� +	�*(��	�#)1%+#	�,#	0 −	�<*(��	�#)/,#	\ ;�[�	2 =0 

� ]1 − 1n� ^(1 − 	�)?�	� [� 	+ 3(1 − 	�)2?�	< :�[� −	15(1 − 	�)8?�	� :�[�	 + �?�	� [�	 +	 3�2?�	< ;�[�	 −	15�	8?�	� ;�[�	bc = 0 

� ')(��	*),%	� [� 	+ �(��	*)�,%	0 :�[� −	�<(��	*)/,%	\ :�[�	 + *+#,#	� +	�*1%+#	�,#	0 −	�<*	/,#	\ ;�[�	23 = 0                     (6) 

From equation (4) with � = � = 0 and the first of equations (6), we have; 

d�� − '(��*)(�5*)+%|�5*|� + �(��*)(�5*)+%-%�|�5*|0 − �<(��*)(�5*)+%-#/|�5*|\ + *(�5*��)+#|�5*��|� + �*(�5*��)+#1%�|�5*��|0 − �<*(�5*��)+#1#/|�5*��|\ 3 = 0    (7) 
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To obtain locations of collinear points on the � − fghi, we divide the orbital plane into three parts; � j ��, �� A � A �� and �� j �  with respect to their primaries, given that � � � � 0 . These three points are considered in Cases I, II and III 

respectively. 

Case I: Let the collinear point k� be on the RHS of the smaller primary at a distance l from it on the � . fghi (i.e � j ��). 

 

Let us consider � . �� � l 

But �� . �� � 1 , then � . 1 . �� � l . Therefore � . �� � 1 � l 

Since O is the centre of mass !1 . �$��+	���=0; ��+	�!�� . ��$=0 (but �� . �� � 1$ 
Then; ��+	� � 0	, ��=-	� 

Therefore; � � �� � 1 � l � 1 � l . �                                                              (8) 

Substituting equation (8) into equation (7), yields, 

8d�!1 � l . �$!1 � l$�l� . 8!1 . �$!1 � l$�l�[� . 12!1 . �$!1 � l$�l�[�:� � 15!1 . �$l�[�:� . 8�!1 �l$�l�[� . 12�!1 � l$�l�[�;� � 15�!1 � l$�[�;� � 0                              (9) 

Case II: Let the collinear point k� be on the LHS of the smaller primary at a distance l from it on the � . fghi (i.e �� A � A��). 

 

Where �� � .�, 	�� � 1 . � then; � � �� . l � 1 . � . l;	 
?� � l, ?� � 1 . l, !� . ��$ � 1 . l, !� . ��$ � .l                                      (10) 

Substituting equation (10) in equation (7), yields, 

d�!1 . � . l$ . '!��*$+%!��m$# � �!��*$+%-%
�!��m$n . �<!��*$+%-#

/!��m$o . *+#
m# . �*+#1%

�mn � �<*+#1#
/mo 3 � 0        (11) 

Multiplying pq	8!1 . l$�l� we obtain, 

8d�!1 . � . l$!1 . l$�l� . 8!1 . �$!1 . l$�l�[� . 12!1 . �$!1 . l$�l�[�:� � 15!1 . �$l�[�:� � 8�!1 .l$�l�[� � 12�!1 . l$�l�[�;� . 15�!1 . l$�[�;� � 0                                (12) 

Case III: Let the collinear point k� be on the LHS of the bigger primary at a distance l from it on the � . fghi (i.e �� j � ). 

 

where �� � .�, 	�� � 1 . � then  

� � �� . l � .� . l; 
	?� � l, ?� � ?� � 1 � 1 � l,	                                                                        (13) 

!� . ��$ � .l, !� . ��$ � .!1 � l$ 
Substituting (13) into equation (7), we have 
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d�(−� − l) − '(��*)(�m)+%m� + �(��*)(�m)+%-%�m0 − �<(��*)(�m)+%-#/m\ + *��(�5m)�+#(�5m)� + �*��(�5m)�+#1%�(�5m)0 − �<*��(�5m)�+#1#/(�5m)\ 3 = 0    (14) 

Multiplying by 8(1 + l)�, we have 

8d�(−� − l)(1 + l)�l� + 8(1 − �)(1 + l)�l�[� + 12(1 − �)(1 + l)�l�[�:� − 15(1 − �)(1 + l)�[�:� + 8�(1 +l)�l�[� + 12�(1 + l)�l�[�;� − 15�l�[�;� = 0                                            (15) 

The real root of each of equations (9), (12) and (15) gives the position of collinear point. 

4. Stability of Collinear Points 

To examine the stability of the collinear points, we consider the characteristic equation of the system given below by [20]; 

r� − �Ω��� + Ω��� − 4�r� + Ω��� Ω��� − �Ω��� �� = 0                                          ss    (16) 

The second derivatives are thus; 

Ω�� = 1(1 − e�)� �& ]1 − 1n� ^(1 − �)[�?�� +	3(1 − 	�)2?�< :�[� −	 158?�� (1 − �):�[� + �	[�?�� + 3�;�[�	2?�< −	 158?�� �;�[�	b	
+ 1n� ^3(1 − �)(� −	��)�[�?�< +	15(1 − 	�)(� −	��)�2?�� :�[� −	105(1 − �)(� −	��)�:�[�8?�� + 3�(� −	��)�[�?�<+ 15�;�(� −	��)�[�	2?�� −	105�;�(� −	��)�[�8?�� bc 

Ω�� =	 1(1 − e�)� �& ]1 − 1n� 	^(1 − �)[�?�� +	3(1 − 	�)2?�< :�[� −	 158?�� (1 − �):�[� + �	[�?�� + 3�;�[�	2?�< −	 158?�� �;�[�	b 	
+ 	 1n� ^3(1 − �)[�?�< +	15(1 − 	�)2?�� :�[� −	105(1 − �):�[�8?�� + 3�[�?�< + 15�;�[�	2?�� −	105�;�[�8?�� b ��c 

Ω��  = 
�(��"#)% #& ∙ �(# u

�(��*)(��	�%)+%,%0 +	�<(��	*)(��	�%)�,%\ :�[� −	��<(��*)(��	�%)-#+%/,%v +
�*(��	�#)+#,#0 + �<*1%(��	�#)+#	�,#\ −	��<*1#(��	�#)+#/,#v

w�                         (17) 

Now, for the stability of a collinear point exist on the � − fghi, i.e. � = � = 0, then, 

?� = |� � �|, ?� = |� � � . 1|                                                                  (18) 

Substituting equation (18) In the first of equation (17)  

Ω��� � !1 − x�)�� �& ]1 + 2d� y(1 − �)[�|� � �|� � 3!1 − �)[�:�|� � �|< . 45(1 − �)[�:�8|� � �|� � �[�|� � � . 1|� � 3�[�;�|� � � . 1|< . 45�[�;�8|� � � . 1|�zc j 0 

For the second and third equations of (17) with � = 0 we have 

Ω��� = (1 − x�)�� �& ]1 − �{# y=d�� − �(��*)+%-%�,%n + �<(��*)+%-#/,%o − *+#,## − �*+#1%�,#n + �<*+#|1#/,#o > �,% + �(��*)+%-%�,%0 − �<(��*)+%-#/,%\ +
*+#,#� + �*+#1%�,#0 − �<*+#1#/,#\ zc  

And Ω��� = 0. 

The first of equation (6) with �= 0 can be written as 

(��*)+%,%# = d�� − �(��*)+%-%�,%n + �<(��*)+%-#/,%o − *+#,## − �*+#1%�,#n + �<*+#1#/,#o                                       (19) 

Using equation (19) 

Ω��� = (1 − x�)�� �& '1 − �{# =d�� − �(��*)+%-%�,%n + �<(��*)+%-#/,%o − *+#,## − �*+#1%�,#n + �<*+#1#/,#o > �,% − �{# =�(��*)+%-%�,%0 − �<(��*)+%-#/,%\ +
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*+#,#� + �*+#1%�,#0 − �<*+#1#/,#\ >3                                                                        (20) 

Neglecting higher order terms of a, x�, :�, ;� , :�fd};� we have, 

Ω��� � ~�?� �
�x�2?� �

f�[�?�. ?�� �1 .
3:�2 � 15:�8 . x� � 3;�2 y 1?�� . 1z �

15;�8 y1 . 1?��z�
. f�[�?�� �1 . 3:�2 � 15:�8 . x� . 3;�2 y1 . 1?��z .

15;�8 y 1?�� . 1z�� 

Since � A �
� , :D, ;D , x� ≪ 1, ?� j 1, ?� A 1 where h � 1,2. we have 

Ω��� � ]*,% � *6#
�,% � 8*+#,%.,## y1 . �-%� � �<-#/ . x� � �1%� = �,## . 1> � �<1#/ =1 . �

,#�>z . 8*+#,#� y1 . �-%� � �<-#/ . x� . �1%� =1 . �
,##> .

�<1#/ = �,#n . 1>zc A 0                                                                          (21) 

Ω��� � 0 since � � 0.                       (22) 

Therefore, for the collinear points lying in the interval !� j ��$, !�� A � A ��$  and !�� j �$  respectively with 

respect to their primaries, given that � � � � 0 , we have Ω��� j 0, Ω��� A 0 and Ω��� � 0.	 
Since Ω��� Ω��� . �Ω��� �� A 0 , its discriminant is positive 

and the roots can be expressed as r�,� � �f and r�,� � �hp 

where f and p are real. This confirms that, the motion in the 

neighborhood of the collinear points is unstable since it is not 

bounded. 

5. Numerical Applications 

The collinear points denoted by k�, k�, k� are evidenced by 

cases I, II and II respectively. Using Equations (9), (12) and 

(15), for various oblateness up to J4, mass ratio !�$, mean 

motion ( d ) radiation pressure (q1 and q2), we compute 

numerically using MATHEMATICA software, the positions 

of the collinear points as given in table 2. 

Table 1. Numerical data for the binary systems. 

Binary system M1 (Msun) M2 (Msun) L1 (Lsun) L2 (Lsun) Spectral type (V) Mass ratio (�$ 
61 Cygni 0.7000 0.6300 0.1530 0.0850 K5/K7 0.4737 

Struve 2398 0.3340 0.2480 0.0390 0.0210 M3/M3.5 0.4261 

Table 2. Showing the effect of oblateness up to zonal harmonic �� on the collinear points (��,�	,�) for systems (61 Cygni and Struve 2398). 

Binary Systems Mass ratio (�) �� �� �� �� �� �� �� 

61 Cygni 0.4737 0 0 0 0 0.82848 0.04357 -1.84651 

  0.01 0.02 -0.005 -0.01 0.86643 0.03870 -2.28751 

  0.02 0.04 -0.01 -0.02 0.90523 0.03979 -2.67807 

  0.03 0.06 -0.015 -0.03 0.94561 0.04683 -3.04271 

  0.04 0.08 -0.02 -0.04 0.98836 0.06002 -3.40197 

Struve 2398 0.4261 0 0 0 0 0.72743 0.10751 -0.61480 

  0.01 0.02 -0.005 -0.01 0.87399 0.12047 -0.76938 

  0.02 0.04 -0.01 -0.02 0.94455 0.17366 -0.91642 

  0.03 0.06 -0.015 -0.03 0.97683 0.23611 -1.06799 

  0.04 0.08 0.02 -0.04 0.98830 0.29581 -1.23544 

Graphs showing the effect of oblateness up to zonal harmonic ��, the eccentricity and semi-major axis for the binary system; 

61 Cygni. 
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Figure 1. Effects of oblateness on k� with � � 0.4737, f � 0.628, x � 0.49, q1=0.999767 , q2=0.999856. 

 

 

Figure 2. Effects of oblateness on k� with � � 0.4737, f � 0.628, x � 0.49, q1=0.999767 , q2=0.999856. 
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Figure 3. Effects of oblateness on k� with � � 0.4737, f � 0.628, x � 0.49, q1=0.999767 , q2=0.999856. 

Graphs showing the effect of oblateness up to zonal harmonic ��, the eccentricity and semi-major axis on the collinear points 

for the binary system Struve 2398. 

 

 

Figure 4. Effects of oblateness on k� with � � 0.4261, f � 0.2667, x � 0.70, q1=0.999876 , q2=0.9999098. 
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Figure 5. Effects of oblateness on k� with � 0.4261, f � 0.2667, x � 0.70 , q1=0.999876 , q2=0.9999098. 

 

 

Figure 6. Effects of oblateness on k� with � 0.4261, f � 0.2667, x � 0.70 , q1=0.999876 , q2=0.9999098. 

6. Discussion and Conclusion 

As shown in Equations (9), (12) and (15), the positions of 

collinear points are affected by the eccentricity, mass ratio, 

radiation pressure and oblateness up to zonal harmonic �� of 

the primaries. This agrees with the result of [14] with J4= 0. 

The coordinates of the collinear equilibrium points are 

obtained numerically in table 2 and graphically in figures (1, 

2, 3, 4, 5 and 6) for the binary systems: 61Cygni and Struve 

2398. k�  and k�  increase with the increase in oblateness 

while the position of k�  decreases with the increase in 

oblateness. This indicates that, the collinear points k� and k� 

move toward the less massive primary with increase in 

varying oblateness as shown in table 2 for the binary systems 

and figures (1, 2, 3, 4, 5 and 6). Whereas, k� shifts closer to 

the more massive primary. By comparing the two binary 

systems, 61 Cygni and Struve 2398, it can be said that the 

effect of zonal harmonics does not show physically in the 

cases on the positions of k�  and k�  whereas it is shown on 

the positions of k� like in the case of 61 Cygni (Figure 2).  

Figures (1-6) indicate that, the positions of collinear points 

do not move uniformly with increase in varying oblateness 

for the stated binary systems. 

The stability of our collinear points affirms with those of 

[14]. As evidence in equations (18), (21) and (22), we have 



 International Journal of Astronomy, Astrophysics and Space Science 2017; 4(5): 23-31 31 

 

Ω��� j 0, Ω��� < 0 and Ω��� = 0 respectively for the collinear 

points lying in the interval (� j ��), (�� < � < ��)  and (�� j �) with respect to their primaries, given that � = � =0 . Since, Ω��� Ω��� − �Ω��� �� < 0  in equation (16), its 

discriminant is positive and the roots can be expressed as r�,� = ±f  and r�,� = ±hp  where f  and p  are real. This 

confirms that, the motion in the neighborhood of the collinear 

points is unstable since it is not bounded 
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