
Open Science Journal of Mathematics and Application 
2017; 5(1): 1-7 

http://www.openscienceonline.com/journal/osjma 

ISSN: 2381-4934 (Print); ISSN: 2381-4942 (Online) 
 

 

Research on Nonlinear Vibration Characteristics of 
Saddle- Shaped Orthotropic Membrane 

Song Weiju, Wang Xinxin, Wang Xiaowei 

City College of Science and Technology, Chongqing University, Chongqing, P. R. China 

Email address 

nimrodsong@126.com (Song Weiju), wangxinxin0712@126.com (Wang Xinxin), wangxiaowei0225@126.com (Wang Xiaowei) 

To cite this article 
Song Weiju, Wang Xinxin, Wang Xiaowei. Research on Nonlinear Vibration Characteristics of Saddle- Shaped Orthotropic Membrane. Open 

Science Journal of Mathematics and Application. Vol. 5, No. 1, 2017, pp. 1-7. 

Received: March 21, 2017; Accepted: March 28, 2017; Published: June 15, 2017 

Abstract 

This paper, the nonlinear free vibration of saddle shaped Orthotropic Membrane is investigated. The 

Krylov-Bogolubov-Mitropolsky (KBM) perturbation method is employed for solving the governing equations of large amplitude 

nonlinear vibration of the membranes Presented herein are asymptotic analytical solutions for the frequency function of large 

amplitude nonlinear damped vibration of rectangular orthotropic membranes with four edges fixed. Through the computational 

example, The influence regularity of vibratory parameters such as structural parameters, initial displacement and vibration 

modes was studied. Which shows that the orthotropy and geometrical nonlinearity is significant for preventing destructive in 

membrane structures. In addition, the results provide some computational basis for the vibration control and dynamic design of 

membrane structures. 
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1. Introduction 

Membrane structure is a new kind of tension structure 

carried load within membrane materials which have grown 

rapidly from the 1970s and now widely applied in large span 

structures. Because of its low weight, large flexibility, small 

damp and low natural vibration frequency, it is susceptible to 

vibration and relaxation deformation. As a result it will easily 

vibrate and the construction will be destroyed. Therefore, it is 

necessary to study the vibration characteristics of membrane 

structure to ensure a safe design. 

In recent years more and more attention is being focused on 

the dynamic characteristics of membranes and many scholars 

have studied the free vibration theories of membranes but was 

limited to regular shape and The orthotropic properties of the 

membrane are not considered. Their researches involved the 

problems of: free vibration of confocal composite elliptical 

membranes [2]; free vibration of composite rectangular 

membranes [3, 4]; vibration of circular membranes [5, 6]; 

Free Vibration of Annular membrane [7]. a few articles 

discussed the orthotropic properties of the membrane in 

vibrating. 

Using a semi-analytical method, the free vibration of saddle 

shaped orthotropic membranes is investigated in this paper, 

On the basis of large amplitude theory and D’Alembert’s 

principle, the governing equation is addressed. Because 

damping exists in the governing equations, the solution of the 

governing equations will not be a periodic solution. Therefore, 

we apply the Krylov-Bogolubov-Mitropolsky (KBM) 

perturbation method to solve the nonlinear, damped, large 

amplitude vibration problem of orthotropic membranes with 

four fixed edges. computational examples are given to analyze 

the natural frequency change rules affected by each parameter. 

Some conclusions are also presented. 

2. Governing Equations and Boundary 

Conditions 

The saddle shaped Orthotropic Membrane model studied is 

orthotropic, with differential Young’s moduli in its two 

principal fiber directions. Assume that the two principal fiber 

directions are just along with the two orthogonal directions x 
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and y in a three-dimensional (3D) Cartesian coordinate system; 

see Fig. 1. The four edges of the model are embedded in an 

otherwise immovable structure. The spans in x and y are 

denoted by a and b, respectively; N0x and N0y denote the 

initial stress in x and y, respectively. (Point O0 is in the plane 

xoy.) 

 

Figure 1. Saddle shaped membrane structure with four edges fixed. 

For any saddle shaped Membrane model, the initial surface 

function z0 is: 
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Where, x
f denote mid span arch in x , y

f denote mid span 

sag in y , and a  and b denote the length of x  and y

direction. 

The initial principal curvatures in x and y are: 
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While the membrane is vibrating, the effect of shearing 

stress is so small that we may assume that Nxy=0 in order to 

simplify the computation. According to the large amplitude 

theory and D’Alembert’s principle [2], the dynamic 

equilibrium equation and the compatible equation of 

orthotropic membrane are 
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Where ρ is the aerial density of membrane, c is the viscous 

damping; Nx and Ny denote additional tension in x and y, 

respectively; N0x and N0y denote initial tension in x and y, 

respectively; w denotes deflection: w(x, y, t); h denotes 

membrane’s thickness; E1 and E2 denote Young’s modulus in x 

and y, respectively; µ1 and µ2 denote Poisson’s ratio in x and y, 

respectively. 

The principal curvatures in x and y are: 
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Where ∆kx and ∆ky are principal curvature increments in x 

and y, respectively. The initial surface function Z(x, y, t) during 

the membrane’s vibration is 

0
( , , ) ( , ) ( , , )z x y t z x y w x y t= +            (5) 

The corresponding curvatures in x and y can be expressed 

as: 
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Compared with k0x and k0y, the higher order traces ∆kx and 

∆ky can be ignored in the compatible equation. 

Introducing the stress function  (x, y, t)ϕ  and letting: 
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Equation (3) can be simplied as follows: 
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Where  ϕ  is the stress function  (x, y, t)ϕ . 

The corresponding boundary conditions may be expressed 

as: 
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Under the action of N0x and N0y, the equilibrium equation is 

obtained 
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Substituting equation (10) into equation (8), yields: 
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3. Solution of Fundamental Equations 

The functions that satisfy the boundary conditions (9) are as 

follows: 
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Where ( , )W x y  is the given mode shape function, ( , )x yφ
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is the coordinate stress function; ( )T t and �( )T t  are the 

unknown functions changed with time which reflects the 

vibration regularity. Assume that the mode shape function is 

given by 
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π π=            (14) 

Where m and n are integers, and denote the sine half-wave 

number in x and y directions. Equation (14) satisfies the 

boundary conditions automatically. 

Substituting equation (14) into compatible equation (12), 

yields: 
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Assume that the stress function which satisfied equation. 

(15) is: 
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Substituting equation (16) into equation (15), yields: 
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Substituting equation (14), equation (16) and equation (17) 

into equation (11), and in view of the Bubnov-Galerkin 

method, yields: 
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Eq. (18) can be simplified as 
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Because there is damping in Eq. (19), its solution will not be 

a periodic solution. In addition, Eq. (19) is a nonlinear 

differential equation [1]. Therefore, it is very difficult to 

obtain its analytical solution. We apply the KBM perturbation 

method to obtain the approximate analytical solution that 

satisfies Eq. (19). 

Assume that the perturbation parameter is 
2

1
h
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let ( ) ( )t T tχ χ= = . Equation (19) can then be simplified as 
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Assume that the solution of Eq. (16) is: 
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cosaχ ψ=                    (21) 

where a and ψ  are not constants since they are functions of 

time t . they can obtained by:  
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In Eq. (22),  
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Substituting Eq. (23) and Eq. (24) into Eq. (22), yields: 
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Integrating Eq. (25) and using the variable separation 

method, yields: 
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Substituting Eq. (26) into Eq. (21), yields: 
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In Eq. (27), 0
a  is the amplitude and 0

ψ  is the initial phase. 

They are determined by the initial conditions. Assume that the 

general initial conditions are: 
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Where b0 and v0 denote the initial displacement and velocity 

of point (x0, y0). 

Taking the derivative of function (27), yields. 
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In order to simplify the calculations, we assume that the 

initial displacement is 0 0
b a= and the initial phase is 0

0ψ = , 

and Eq. (27) can be transformed into: 
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By substituting Eqs. (14) and (30) into the first formula of 

Eq. (13), we can obtain the displacement function of nonlinear 

large amplitude vibration of membranes with viscous 

damping. 
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Equation (30) is the approximate analytical solution for Eq. 

(19). In view of Eq. (30), the approximate analytical 

expression of the frequency is: 
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4. Computational Examples and 

Discussion 

Considering the membrane material used in this project as 

an example, we have the Young’s modulus in x and y as E1 = 

1.4 × 106 and E2 = 0.9 × 106 kN/m, respectively; the aerial 

density of membranes is ρ = 1.7 kg/m2; the membrane’s 

thickness is h = 1.0 mm; The viscous damping is c =90 N s/m; 

ratio of span is 
b

a
λ = ; ratio of arch to span in x and y are

x

x

f

a
ε = and

y

y

f

b
ε = , respectively. 

4.1. Values of Frequency ω (rad/s) Under 

Different Initial Displacements 0
a

 

We have the initial tension in x and y are 

0 0
3

x y
N N KN= = . the length of x and y direction are

1a b m= = ; ratio of arch to span in x and y are 0.1
x y

ε ε= = . 

The curve of frequency (rad/s) under different initial 

displacements is shown in Fig. 2. ( 0.01t s= ) 

 

 



 Open Science Journal of Mathematics and Application 2017; 5(1): 1-7 5 

 

 

Figure 2. Frequency (rad/s) under different initial displacements. 

According to Fig. 2, Frequency values nonlinearly increase with respect to initial displacement and the larger the initial 

displacement, the faster the rate of increase in vibration frequency. Meanwhile, the frequency values also increase with 

increasing vibration order. 

 

Figure 3. Three-dimensional diagram of frequency (rad/s) and vibration order ( 0 0.01=a m ). 

 

Figure 4. Three-dimensional diagram of frequency (rad/s) and vibration order (
0 0.001=a m ). 
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4.2. Values of Frequency (rad/s) Under Different Span Ratio λ  

The curve of span ratio and vibration frequency is shown in Fig. 5. ( 0 0
3

x y
N N KN= = , 0.1

x y
ε ε= = , ,

0
0.001a m= ) 

 

Figure 5. Curve of span ratio and vibration frequency. 

According to Fig. 5, The increase of span ratio λ and the 

comparison of the different models show that Frequency 

values decreases with increasing span ratio λ . when 0.2λ ≤ , 

the natural vibration frequency ω  in all models decrease 

sharply. ω  increases gently when 0.2λ ≥ , which shows 

that the near-span sizes (a ≈ b) should be avoided in saddle 

shaped structures. which shows that the span-ratio value 

should not be given too large in saddle structures. For the 

orthotropy of membrane, in the saddle shaped model a greater 
ω  can be obtained if the smaller modulus is arranged in the 

long-side direction when λ ≠ 0.2 (just as E1 > E2). The more 

discrepant the two span sizes (b and a), the greater the 

vibration frequency; when λ=0.2, two frequency values are 

equal.  

4.3. Values of Frequencyω  (rad/s) Under 

Different Ratio of Arch-to-Span in x and y 

The curve of arch-to-span ratio and vibration frequency is 

shown in Fig.6 and Fig.7. ( , 1a b= = ,

, ) 

 

Figure 6. Three-dimensional diagram of frequency (rad/s) and arch-to-span ratio. 

ω

0.01t s=

0 0 3x yN N KN= =

0.01t s= 0 0.001a m=
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Figure 7. Curve of frequency (rad/s) and arch-to-span ratio. 

When the two sizes (sag fx and arch fy) are close to one 

another, the increasing ε has little effect on the structural 

stability, The reasons may be that when they are the same in 

size, relative curvature of the structure in both directions will 

changes lowly. Structure can be treated as planar model at this 

point, the influences of arch-to-span ratio on the vibration 

frequency weaken gradually, which is a negligible factor in 

designing the kind of structure.  

The natural of membrane is larger as the difference between 

ratio of arch-to-span in x and y increases. 

5. Conclusions 

In this work, an analytical method was used to study the 

nonlinear vibration of saddle- shaped orthotropic membrane 

structures in the large amplitude theory. The influence of the 

initial structure parameter of membrane on vibrational 

frequency were analyzed and discussed. Based on the results 

obtained from the considered example, we can conclude that: 

(1) The result indicates that with the Initial deflection 

values increasing, the values of frequency show non-linear 

growth. And the larger the initial displacement, the faster the 

rate of increase in vibration frequency. 

(2) Frequency values decreases with increasing span ratio. 

when 0.2λ ≤ , the natural vibration frequency in all models 

decrease sharply. vibration frequency increases gently when 

0.2λ ≥ , For the orthotropy of membrane, in the saddle 

shaped model a greater ω  can be obtained if the smaller 

modulus is arranged in the long-side direction. 

(3) When the two sizes (sag fx and arch fy) are close to one 

another, the increasing ε has little effect on the structural stability. 

The results obtained herein provide a simple and convenient 

approach to understand the nonlinear vibration characteristics 

of saddle-shaped orthotropic membranes in dynamic 

environment. In addition, the results provide some 

computational basis for the vibration control and dynamic 

design of membrane structures. 
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