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Abstract 

In this research paper, a row of blades which consist of a tuned disk and certain number of blades and will be examined. 

Curved blades that cross a series of free moments of inertia due to bending by cantilevered beams are modeled. Regarding that 

the disk being tuned, the whole structural and fluid system analysis is focused on a blade and the current around it. 

Aerodynamic forces during stable and unstable motion in several steps are calculated using ANSYS/ FLOTRAN CFD software 

and then the real and unreal forces fluid are obtained. On the other hand, the equation of motion in Timoshenko beam is 

obtained and to determine the system natural frequencies and modes, outside forces are zero and modal analysis while the 

bending and torsion movements of exposure mode have been done is carried out. By using semi inertia and semi damping and 

semi elastic of fluid’s elements in inertia and damping and stiffness matrix we can have an eigenvalue equation that solved by 

using state space method. In this case we can obtain flutter speed of turbine. Then comparison between steam and gas effect as 

flow on flutter speed were studied.  
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1. Introduction 

Aeroelasticity is a science concerned with mutual 

interactions among structural (inertial and elastic) and 

aerodynamic characteristics of a structure immersed in a 

flowing fluid. It consists of three main subjects; Structure, 

Dynamics, and Aerodynamics. Aeroelasticity study of 

turbomachinery can be roughly classified in two categories: 

self-excited vibration and forced response. Self-excited 

vibration of a lifting surface in a gas stream results from a 

continuous interaction between aerodynamics and structural 

mechanics, in such a manner that the vibrating structure 

begins to extract energy from the flowing fluid, when the 

structure will experience an oscillation. Flutter is a kind of 

self-excited vibration which is dynamically unstable and is a 

self-sustained divergent oscillation. Flutter can limit the 

output load of turbomachineries such as gas turbines. Self-

excited aeroleastic vibrations also include near flutter 

operation which may cause high or low cycle fatigue. In 

some blades that may operate close to the resonance speed. 

For this reason flutter analysis may be provided to give the 

desired life.  Otherwise, the blades are susceptible for failures 

(Rao and Saldanha). The major concern of this paper is all 

types of self-excited aeroelastic vibrations encountered in gas 

and steam turbine blades. 

One of the earlier studies considering airfoil geometries 

was a research done by Whitehead (1962) on ideal flows 

around straight airfoils which have rigid translational and 

torsional oscillations. By 1970, isolated airfoil theory of 

wings was conventionally used considering thin and straight 

airfoil for flutter prediction. 

In compressor and turbine airfoils, a proper camber is 

considered in design with the intent of having pressure and 

suction side. This factor increases radius of gyration and also 

rotary inertia and shear deformation. The aerodynamic 

effects of airfoil camber have already been discussed, 

however with less attention to structural behavior. Atassi and 
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Akai (1980) developed a method for studying airfoils having 

thickness and camber and concluded that airfoil geometry 

have considerable effects on unsteady aerodynamic loadings.  

FEM approaches were then used in plate or solid models 

of structures by Moffatt and Hi (2003). Plate and beam 

models do not have rotary inertia and shear deformation 

capabilities. Solid models restricted to quasi-3D flutter 

analysis and FEM approaches, so Timoshenko beam theory is 

presented, Thereby blades can be analyzed analytically and 

by FEM methods regarding rotary inertia and shear 

deformation. Therefore, some supplementary concepts are 

introduced considering this aspect. 

By introducing Timoshenko beam theory, the effects of 

camber on flutter suppression can be investigated considering 

differences in five aspects: moment of inertia, aerodynamic 

loading, bending/torsion coupling, rotary inertia and shear 

deformation. In this research, flutter properties of cambered 

airfoils based on steam and gas as fluid were compared. 

2. Deriving the Equation of Motion by 

using Timoshenko Beam Theory 

If in the study of the dynamic behavior of beam, rotary 

inertia and shear deformation are also taken into account, 

then these kinds of beams are modeled as Timoshenko 

beams. 

 

Figure 1. The plot of camber airfoil. 

The governing equation of motion of the beam in 

generalized coordinate (q) can be obtained based on 

Hamilton principle. After simplification, the equation set of 

motion is established as: 
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Noting the fact that the blades of compressors are usually 

fixed at the roots, overhung boundary conditions must be 

satisfied. 

In eq.1, bending and torsion are coupled to each other. 

Before determining the final equation of the body in coupled 

form, the external forces must be set to zero and the above 

relations are applied in decoupled form for determination of 

natural frequencies and their relating modes. The term that 

contains x  is omitted by shifting the x coordinate to the 

center of the airfoil.  

2.1. Establishment of the Generalized 

Equation in Dynamic and Force Coupling 

Form 

In this equation, the bending and torsion and on the other 

hand, force and the relations of motion are coupled. In other 

words, there is force coupling in addition to dynamic 

coupling. 

Based on Rayleigh-Ritz method, w , ψ  and θ  are the 

result of their corresponding normal modes superposition. 

Considering one mode 
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h
m ، mθ ،

G
F ،

G
M  and B  are the generalized mass in 

bending and torsion, the generalized force in bending and 

torsion and coupling term respectively. Having the mode 

shape from the previous steps, these parameters can be 

achieved.  

In order to simplify the relations and expressing clearly 

and generally, the mode shape of the lateral, bending and 

pitching vibrations are normalized. Furthermore, as the 

thickness and the mass along the span are assumed constant 

in the current report, this equation is further simplified by 

taking m out of the integral and dividing the two sides by m. 

Moreover, assuming a light damping of the structure, the 

damping is also considered based on the conventional 

methods. 
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Consequently, the mode shapes are normalized without 

considering inertial factors. 
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The equation set is therefore reduced t  
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Which are the generalized equation in dynamical and 

force coupling form. In addition, rθ  is the radius of gyration 

with respect to the elastic axis. Consequently, the dynamical 

and force coupled equation can be solved. However, the 

natural frequencies of bending and torsion and the relevant 

modes must be computed before solution. Methods for 

computation of these parameters will be described in the 

next section.  

2.2. Calculating Bending Natural 

Frequencies and the Relevant Mode 

Shapes 

In this case, in order to reduce the parameters, and also for 

possibility of converting the results to the desired 

dimensions, the quantities of eq. 1 are non-dimensionalized.  

The first and second relationships of eq.1 are non-

dimensionalized by dividing them by 
2/IE l  and 

6/IE l  

respectively and some manipulations. Finally, the following 

set of equation is developed. (The dimensionless quantities 

are denoted by ~ over them.) 
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For determining the natural frequencies of bending, the 

decoupled equation is solved by separation of variable 

methods. A method was introduced by Han et al (1999) for 

modal analysis of Timoshenko beams. Here, the same 

procedure is applied for calculation of bending wave 

numbers (a, b) and the consecutive natural frequency and 

mode shape. 

2.3. Calculating Pitching Natural 

Frequencies and the Relevant Mode 

Shapes 

In order to find the pitching natural frequency, the third 

relation of eq. 1 is simplified to the following relation by 

separation of variable technique. 
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Considering the boundary conditions of cantilever beams, 

the natural frequencies and the relevant mode shapes can be 

obtained conveniently. 
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2.4. Calculation of Aerodynamic Forces 

In this report, aerodynamic analysis is performed by taking 

ANSYS/CFD/ FLOTRAN into account. ANSYS is a 

multiphysics product and one of its features is CFD solution 

of fluid systems by FEM approaches. FLOTRAN has a 

subset named ALE
1
 that can analyze the interaction behavior 

of structures and fluids. ALE a conventional term for systems 

that includes moving boundaries between structures and 

fluids. Utilization of ALE can contribute significantly 

towards incorporating this capability in a fully-coupled 

aeroelastic analysis of blades by ANSYS which will be a 

significant improvement in aeroelasticity. 

 

Figure 2. 2D Mapped meshing of the aerodynamic space around a typical 

blade. 

In aerodynamic analysis of blades, the coordinates of 

airfoil surface is defined at the first step. After that, the grids 

                                                             

1 Arbitrary Lagrangian-Eulerian method 
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are constructed by FLUID141 elements. Mapped meshes are 

used in order to have symmetrical area and the ability to 

apply periodic boundaries which will be described later. In 

order to have finer grids around leading and trailing edges, a 

deliberate pattern of line division is devised. The spanwise 

lines and inlet and exit passages are divided proportionally, 

so that finer meshes are placed around the leading and 

trailing edges as shown in Fig. 1. 

The boundaries of the fluid consist of periodic boundaries, 

the blade surfaces, inlet and exit of the fluid. The periodic 

boundaries retain the circumferential nature of the problem. 

Herein, zero interblade phase angle is considered for periodic 

boundaries. If an interblade phase angle other than zero is 

considered, the circumferential dimension of the domain in 

Fig. 1 must be stretched 2 /hπ σ  further. h and σ  denote 

blade pitch and interblade phase angle, respectively. There 

are two methods for imposing these kinds of boundary 

conditions; considering two adjacent blades as periodic 

boundaries or considering the middle of two adjacent paths 

around the blade as periodic boundaries. In this report, the 

second method is used, and the periodic boundaries are 

applied at both sides of airfoils in one pitch space, so that the 

space between each blade and its corresponding periodic 

boundaries is equal to / 2h . 

At the inlet, Mach number and the angle of attack are 

known. If just the inlet Mach number is given, the output 

pressure is varied until the inlet Mach number satisfies the 

requirement. For preventing reflection of the entering and 

exiting waves (specially in supersonic flows), these boundary 

conditions must be imposed at a distance far from the airfoil 

that minimizes the influences of these reflections. In this 

schedule, this boundary is taken at one chord length far from 

the leading or trailing edges. 

The most significant part of these boundary conditions is 

determining the condition of the border between the fluid and 

the structure. As stated before, in the current analysis, ALE is 

used for imposing these conditions. This is done in time 

domain by time stepping approach. At first, an adequate 

reduced frequency is assumed as the vibration frequency of 

the blade. The time wave corresponding to this frequency is 

then divided to small time steps (each cycle about 100 

divisions) and for each moment, the horizontal and vertical 

coordinate of the blade is given to the program and the 

condition of the border between the fluid and the structure is 

therefore represented as Tables (Refer to ANSYS help for 

more information). 

In addition, the velocity of the border between the fluid 

and the structure can be calculated by differentiating its 

corresponding displacement value. Then these values are 

given to the software as Tables. The validity of these values 

can be checked by using the menus of the software. 

As the fluid is regarded viscous, no-slip boundary 

condition is considered for the blade surface. 

The final output of this section is the pressure distribution 

of the blade surface which is sufficient for computing the 

aerodynamic forces and moments. Fourier transformation is 

utilized for obtaining the real and the imaginary components 

of these forces during one cycle. 

2.5. Parametric Substitution of the 

Aerodynamic Forces in Dimensionless 

Equation Set 

As the aerodynamic effects on structures are often 

expressed as pressure or force coefficients, it is better to non-

dimensionalize the other quantities of the equations for 

uniqueness. After the required conversions, the generalized 

aeroelastic equations are rewritten as 
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For this purpose the two sides of the first relationship has 

been multiplied by 2/b U∞  and the second relation by 21 / U∞ . 

3. Aerodynamic Forces 

Generalization Method 

In the current research, aeroelastic analysis is performed 

by loosely coupled method. At first, the aerodynamic forces 

are written as a function of reduced frequency, mode shape 

and the resulting matrices. 

If these forces are considered constant along the span 

(Otherwise piecewise integration must be used), the final 

formula for obtaining the generalized aerodynamic forces is  
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The bending and torsional natural frequencies are then 

orthonormalized by the following relation. 
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By this approach, the terms are simplified to this result 
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4. Establishing Aeroelastic Equation 

In the previous section, a parametric relation was for 

computation of the generalized aerodynamic forces as a 

function of ( )C p  which is a representative of the 

aerodynamic forces, thus it is necessary to calculate ( )C p  by 

using the existing aerodynamic data. In this method, 

aerodynamic forces are represented as a function of reduced 

frequency by Roger' approximation technique in laplace 

domain. 
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Where 1C , 2C
 
and 3C  represent quasi-elastic, quasi-

damping and quasi-inertia coefficients. p  Is a laplace 

variable. Also, in order to have more accurate answers, an 

augmented variable is defined as 2( / ( ))m mq p p qβ −= + , so 

this approach can also facilitate aeroservoelasticity analysis 

of turbomachinery blades. 

The aerodynamic coefficients are then calculated at several 

reduced frequencies by the aerodynamic method described in 

this paper, and then Roger’s approximation technique is used 

by applying the method introdued by Karadal et al (2007). 

By applying the approximated generalized forces in eq.8, the 

final aeroelastic equation is transferred to the laplace form. 

i.e. 
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As this aeroelastic equation is non-linear, it must be solved 

by state space approach. So its inverse laplace transformation 

leads to 
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In this research, the solution of the eigenvalue equation by 

state space method is accomplished for 6M = . 

To find the flutter speed, the inlet fluid velocity and thus 

hk  and kθ  are varied until the real part of one of the 

eigenvalues becomes zero. The effects of either hk  or kθ  

can be observed in eq.8. The real part of the eigenvalue 

represents the damping ratio and the imaginary part 

represents the damping frequency. The flutter is occurred 

once 0µ ≥ . 

Furthermore, for simulation of the dynamic behavior of the 

system, the eigenvector must also be derived. For each 

eigenvalue, the equation  

( ) 0A pI x− =                               (14) 

can be solved for its corresponding eigenvector. so the time 

evolution of the structure is obtained by this formula. 
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Thus, the motion of the generalized coordinate can be 

evaluated versus time. It is obvious that by having the mode 

shapes of bending and torsion described in the previous 

sections, and multiplying those by components hq
b  and qθ , 

the equation of motion in each section of the blade can be 

obtained. 

5. Aeroelastic Analysis by 

Conventional Method 

In this approach that sometime is referred to as double 

scanning method, the frequencies are non-dimensionalized 

with respect to the tosional natural frequencies. The 

earoelastic quantities of this method are non-dimensionalized 

by dividing eq. 4 by 2
θω . 
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After substitution, this general relationship is achieved.  

0M X B X K X+ + =ɺɺ ɺ                        (16) 

According to this method, the flutter speed can be 

achieved by trial of various k  values for a constant mass 

ratio. 

6. Claculations and Discussions 

A tuned bladed disk system of a gas turbine compressor 

made of tenth standard configuration airfoil is subjected to an 

upstream air flow. The flutter velocity and the relevant 

equation of motion are desired. Also, the difference of 

aeroelastic behavior between two blades with cambered and 

uncambered airfoil but with equal area will be discussed. In 

tenth standard configuration, the thickness distribution is 

represented by this equation. 

0.5 2 3 4( ) (2.969 1.26 3.516 2.843 1.036 ) 0 1TT x H x x x x x x= − − + − ≤ ≤                                    (17) 

Where TH  is the nominal blade thickness. The camber 

distribution is given by 
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Where CH (>0) denotes the height of the camber-line at 

midchord and R  is the radius of the circular arc camber line 
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In this aeroelastic case, the structure characteristics are 

given as follows; 

l=span=0.12 m blade spa  
34460 /s kg mρ =  density of the structure 

E=114 G Pa module of elasticity 

υ=0.31 Poisson’s ratio 

1.7556γ =  shear coefficient 

G = 4.3511e10 shear modulus 

0.06TH = , 0.05CH =  in cambered airfoil 

x∀ : ( ) 0C x =  in uncambered airfoil 
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Damping ratio of bending 

and torsion 

The characteristics of this cambered airfoil are equivalent 

to NACA0006 airfoil. 

Natural frequency calculation 

In order to determine the area and the moment of inertia, a 

program named ROSANE was provided in MATLAB and the 

data pertaining to the thickness distribution and the camber 

of airfoil was given to it.  

Uncambered Airfoil 

A = 4.0815e-004 the airfoil area  

0.0418

0

center

center

x

z

=
=

 Mass center position 

Determination of the elastic center (shear center): By 

taking ( ) 0C x = for every x in eq.18, one can conclude that  

a center a centerx x y y= =  

The elastic center is moved towards x axis to the 

decoupling point at which the z coordinate is the same as the 

center. The coordinate of the decoupling point is  

into center o elastic pox x z z= =  

Moments of inertia of the airfoil surface with respect to the 

decoupling point is 

Ix_elastic = Ixo=8.4661e-10 

r_torsion = 0.0233  with respect to the elastic center 

r_h = 0.0014 (with respect to the x axis) 

The ratio of the radius of gyration to the span (non-

dimensional radius of gyration) is 

/
0.0120

xo sI A
k

l
= =  

Cambered Airfoil 

For cambered airfoil, the previously stated quantities are   

A = 4.1013e-004 

x_centr = 0.0418 

z_centr = 0.0038 

Ix_elastic = 2.0643e-9 

r_h = 0.0022 

r_t = 0.0249 

0.0187k =  

The airfoil area is approximately the same in both cases. 

However, the moments of inertia due to the increment of the 

airfoil camber are greatly changed. 

A code named Rezone was provided based on the equation 

set provided by Kardal et al (2007) which was solved by 

numerical approach; thereby solution of these equations 

yields wave numbers. Hence, a, b and nω  can be obtained as 

a function of the radius of gyration. 

In the post processing step of this code, the natural 

frequencies can be plotted with respect to the radius of 

gyration in the case of cambered and uncambered airfoil. 

Fig.3 shows typically the variation of natural frequency with 

respect to non-dimensional radius of gyration. 
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Figure 3. The first natural frequencies of Euler-Bernoulli and Timoshenko 

beam models for the specified cambered airfoil based on gas as fluid. 

In addition, the first wave numbers and natural frequencies 

are listed Table 3 and Table 4. The difference of these two 

cases indicates the great effect of camber on natural 

frequency. 

Table 1. Wave number and natural frequencies of the blade with uncambered 

airfoil. 

Wave numbers of Timoshenko model 1( / )ωωωωs rad s  

a B Timoshenko Euler- Bernoulli 

1.8747 1.8728 1773.4934 1775.9100 

Table 2. Wave numbers and natural frequencies of the blade with cambered 

airfoil. 

Wave numbers of Timoshenko model ( / )ωωωωs rad s  

a B Timoshenko Euler- Bernoulli 

1.8742 1.8696 2757.2796 2766.3820 

For verification of the frequencies resulting from Rezone 

code, the natural frequency of cambered airfoil obtained by 

this code was compared with the result obtained by ANSYS. 

The output of Rezone was consistent with what achieved by 

ANSYS. The procedure to analyze the structural model by 

ANSYS was as follows; Element BEAM44 was used for 

modeling Timoshenko beam. Concerning the capabilities of 

this element, the value of Poisson’ ratio was given to this 

program so that the shear deformation can be considered. 

Furthermore, in order to take the rotary inertia into account, a 

rectangular section whose area equals the airfoil area was 

generated and then meshed with fine grids. 

In Euler-Bernoulli beams, element BEAM54 is used and 

the Poisson’s ratio was considered zero so that the effects of 

rotary inertia and shear deformation were ignored. The 

results were 

1 2759.6826 /s Rad sω =
 
Timoshenko model 

1 2766.7184 /s Rad sω =
 
Euler-Bernoulli model  

Which agree with the Rezone output. Moreover, the 

torsional natural frequency of the blade was achieved by eq.7 

which results 

40885.8454 rad/s.tsω =  

In order to verify the results of torsional natural frequency, 

the modal analysis of the blade was performed by ANSYS. In 

this model, the length of the blade was subdivided by 100 

nodes. Then elements COMBINE14 which have stiffness 

was placed between each two nodes and elements MASS21 

which consist of moment of inertia were defined for each 

node (except the node placed on the root of the blade).  

Note that the distance between the first node and the blade 

root and so the moment of inertia is half of the other 

intervals, so the stiffness of this element is two times of the 

other. By this procedure the following first natural frequency 

was obtained for torsional frequency.  

41292.7011 rad/stsω =  

Which was consistent with the previously calculated result. 

7. Calculation of the Aerodynamic 

Forces by Applying the Program 

Provided by ANSYS 

As the bladed disk system (Blisk) was assumed to be 

tuned, the analysis was simplified to a single blade and its 

surrounding aerodynamic spaces. To determine the 

aerodynamic forces, the characteristics of the airfoil specified 

so far was entered to the code named Vazan that was written 

in ANSYS/FLOTRAN. This code was executed at several 

reduced frequencies. In this step, the condition of the 

problem solution was determined and the fluid was 

introduced to Vazan as gas, then some appropriate commands 

were issued so that the properties can be varied as a function 

of temperature and pressure. However, as predicted, it was 

observed in this report that the variation of density and 

viscosity was negligible. As in many other references, the 

initial conditions and the inlet properties of the fluid were 

considered �10  angle of attack, 0.7 inlet Mach number and 

standard condition. 

The Reynolds number may exceeds the laminar flow 

threshold, because flutter may takes place in a free stream 

velocity which is in transonic or supersonic condition, 

although the fluid enters the blade path in a low angle of 

attack, so the turbulence of the flow was also introduced to 

the program. There are various models of turbulence in 

ANSYS such as k ε− , k ω−  and combination of them. 

Some tests were accomplished, and it was observed that 

k ε−  model is the most adequate. 

The solution of the problem is also done in time steps, thus 

the output of this code is pressure distribution in each time 

step, and the force (lift) and the aerodynamic moment 

coefficient of the entire model was computed at every time 

step of the cycle by using the pressure distribution obtained 

from the previous step. The real and imaginary components 

of the lift and aerodynamic moment coefficients were 

obtained by Fourier transformation, in both of cambered and 

uncambered airfoil cases. The results are demonstrated in 

Tables 3 to 6. 

0.0176 0.0178 0.018 0.0182 0.0184 0.0186 0.0188
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Table 3. The values of forces and moments applied on the uncambered 

airfoil in bending oscillation. 

Moment coefficient Lift coefficient Reduced frequency 

-9.8707E-04+3.3168E-03i 0.17765 -0.11783i 0.25 

-2.2700E-03 +8.3711E-03i 0.72614 -0.31617i 0.50 
-1.0045E-03 +1.2667E-02i 1.6327 -0.63079i 0.75 
1.5441E-03 +1.6922E-02i 2.9793 -1.1387i 1.00 
6.3903E-03 +2.1186E-02i 5.0791 -1.8442i 1.25 

1.3635E-02 +2.3231E-02i 7.3461 -2.5477i 1.50 

Table 4. The values of forces and moments applied on the uncambered 

airfoil in torsional oscillation. 

Moment coefficient Lift coefficient 
Reduced 

frequency 
1.9211E-04 -2.7123E-05i -4.1929E-03 -1.3187E-02i 0.25 

5.6821E-04 -1.8174E-04i -9.0745E-03 -2.6261E-02i 0.5 
1.0488E-03 -3.6724E-04i -1.4538E-02 -3.8987E-02i 0.75 
1.5671E-03 -5.0427E-04i -1.4391E-02 -5.6590E-02i 1.0 
2.3474E-03 -7.6659E-04i -1.2532E-02 -7.3824E-02i 1.25 

3.2021E-03 -9.8503E-04i -1.5819E-02  -8.4071E-02i 1.5 

Table 5. The values of the forces and moments applied on the cambered 

airfoil in bending oscillation. 

Moment coefficient Lift coefficient 
Reduced 

frequency 

-6.1341E-04 +3.5263E-03i 0.17124  -0.11408i 0.25 

-1.9681E-03 +8.8104E-03i 0.71264 -0.31106i 0.50 

-8.2827E-04 +1.3378E-02i 1.6100 -0.61952i 0.75 

1.8875E-03 +1.7683E-02i 2.9457-1.1341i 1.00 

5.8285E-03 +2.0104E-02i 4.7458 -1.7184i 1.25 

1.1751E-02 +2.2083E-02i 6.8503 -2.3670i 1.50 

Table 6. The values of forces and moments applied on the cambered airfoil 

in torsional oscillation. 

Moment coefficient Lift coefficient 
Reduced 

frequency 
1.9841E-04 -3.9452E-05i -3.2311E-03 -1.4350E-02i 0.25 

5.7089E-04 -2.1586E-04i -8.8571E-03 -2.6821E-02i 0.50 

1.0875E-03 -3.9875E-04i -1.6302E-02 -4.1274E-02i 0.75 
1.5640E-03 -4.8191E-04i -1.4495E-02 -6.2360E-02i 1.00 
2.1518E-03 -6.9381E-04i -8.8248E-03 -7.1010E-02i 1.25 

2.9653E-03 -8.8725E-04i -1.4690E-02 -7.7265E-02i 1.50 

To verify the results, a typical real and imaginary 

chordwise pressure distribution at bending reduced frequency 

of 0.5 and Mach number of 0.7 and unit oscillation amplitude 

was calculated by Vazan. On the other hand, at the same 

condition, the pressure distribution was derived from 

spectrum code which was introduced by Lawrence et al 

(2000) and the lift and moment coefficient were calculated by 

geometrical methods which agreed with Vazan.  

8. Investigating the Effects of 

Camber on Flutter Characteristics 

of Blades 

This part is devoted to the computation of flutter speed and 

its corresponding frequency with the results of structural and 

aerodynamic analysis, and the aeroelastic behavior of 

cambered airfoils with uncambered ones was performed by 

considering four characteristics: radius of gyration, 

variation of aerodynamic loading, torsion/bending coupling, 

and Timoshenko beam factors. 

For this task, the aeroelastic behavior of the blade with 

uncamberd airfoil was determined at first. After that, the 

above mentioned aspects were considered, and the 

corresponding aeroelastic equation was solved, and the 

normalized bending and torsional mode shapes of the 

structure were obtained. The aerodynamic loading terms 

were then substituted in the main aeroelastic equation as a 

function of reduced frequency. Afterwards, the final equation 

was solved by state space approach and utilizing augmented 

state vector, so that the eigenalues were obtained. The free 

stream velocity was then increased so that at a certain 

velocity the real component of the eigenvalue became zero. 

This velocity is termed flutter speed, and the imaginary part 

of the eigenvalue is the flutter frequency. This procedure was 

repeated for each case. The results of these computations are 

shown in the following Table 7. The second row of this table 

consists of the aeroelastic results via the effects of airfoil 

camber on aerodynamic loading, radius of gyration, and 

bending/torsion coupling. The third one indicates the effects 

of rotary inertia and shear deformation due to airfoil camber 

on flutter characteristics. 

Table 7. Flutter characteristics of the specified blade with cambered airfoil 

using steam and gas as fluid. 

Structural Model Flutter Characteristics 

Cambered Airfoil Using steam as 
fluid 

163.09flutterU =

r 2650.756flutteω =  

Cambered Airfoil Using gas as 

fluid 

140.1095flutterU =

r 2682.0449flutteω =  

Root locus plots of the eigenvalues in cambered airfoil 

with steam and gas as fluid are also demonstrated in Fig. 4 

and fig. 5.  

 

Figure 4. Root locus plot of the eigenvalues of the specified blade with 

cambered airfoil and gas as fluid by the application of Timoshenko theory. 
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Figure 5. Root locus plot of the eigenvalues of the specified blade with 

cambered airfoil and steam as fluid by the application of Timoshenko theory. 

In higher modes the flutter occurs at very high speed so 

that the free stream velocity does not have physical meaning. 

In addition, the flutter of the first mode is predominant, 

because the problems pertaining to flutter do not actually 

allow the speed to rise up to the higher modes. For example 

the second flutter characteristic of this typical case with 

cambered airfoil by Timoshenko theory is 

2876.1233 /V m s= , 16094.6144 /Rad sω = . 

8.1. Comparison of the Final Results with 

Conventional Method 

For verifying the final results, the flutter equation in the 

first mode of Timoshenko model was rewritten based on 

eq.16, and the equation was solved by state space approach 

and by trying different values of k until an adequate value 

was determined at which the real part of the eigenvalue tends 

to zero. 

The aerodynamic forces were calculated in two assumed 

condition and the resulting eigenvalues were obtained from 

eq.16. Interpolation of these reduced frequencies and their 

flutter speeds were then fed into Vazan code whose output is 

entered into the earoelastic equation 16. Next, the flutter 

speed was estimated by this relationship. 

2760.0091 0.05
139.5353 /

0.9890

New
flutter

b
U m s

k

ω ×= = =  

As the result shows, the flutter speed converges back to the 

value determined by Roger’s approximation and the real part 

tends to zero at a moderately low rate. By continuing the 

iterations, more accurate results will be obtained. However, 

the above flutter velocity agrees the Roger’s approximation 

solution which was achieved at the previous section.  

8.2. Determining and Plotting the Equations 

of Motion 

It was assumed that the start of excitation is at zero ( 0)t =

of the time range considered. With the initial condition 

( 0) 1, ( 0) 1.h tq t q t= = = =
 

The plunging and pitching displacements of the 

generalized coordinates of the blade are plotted versus time 

at the flutter as shown in Fig.6 and Fig. 7. 

 
Figure 6. Time simulation of Pitching/Plunging vibration of the blade with 

cambered airfoil and steam as fluid by Timoshenko beam theory at flutter

( 163.09 / )U m s∞ = , ( 2650.756 Rad/s)ω = . 

 

Figure 7. Time simulation of Pitching/Plunging vibration of the blade with 
cambered airfoil and gas as fluid by Timoshenko beam theory at flutter

( 140.1095 / )U m s∞ = , ( 2682.0449 Rad/s)ω = . 

As shown in Fig.6 and Fig. 7, the plunging motions are 

predominant and the motions of the other degrees of freedom 

will cease after elapsing some cycles. Thus, the relations 

were simplified, and after simplifying the terms and 

multiplying them by the mode shapes, the following 

equations of motion were achieved; 

The final equation of plunging motion of the blade having 

cambered airfoil by using Timoshenko theory is 
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( , ) ( ) ( ) [2.1131sin(15.6208 ) 2.8688cos(15.6208 ) 2.1027sinh(15.5933 )

2.8688cosh(15.5933 )] 1.1583cos(2682.04 ).

hh y t y q t y y y

y t

φ= = − −
+ ×

                  (20) 

The final equation of pitching motion of the blade having 

cambered airfoil by using Timoshenko theory is 

5( , ) 16.6667 sin( ) 4.09 10 cos(2682.04 ).
0.24

y t y t
πθ −= × ×   (21) 

9. Conclusion 

In this research paper we calculate the flutter speed in 

turbine blade using steam and gas as fluid. Equation of 

motion in Timoshenko beam is obtained and by using steam 

and gas as fluid we compare the flutter speed in gas and 

steam turbine. The results show that: 

1-. Elastic effects: Increment of the radius of gyration by 

giving camber to the midline of the airfoil led to the 

natural frequency increment, thereby rising flutter 

velocity (elastic effects). 

2-. Dynamic effects: Airfoil camber increased rotary 

inertia and shear deformation, and bending/torsion 

coupling, thereby reducing flutter velocity, but had less 

effect than elastic factors. 

3-. Generally, adequate camber of the airfoil makes flutter 

suppression besides increasing aerodynamic efficiency. 

4-. By using steam as fluid we can delay the flutter speed. 
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