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Abstract 

This paper examines the theoretical implication of quantity-discounted transportation rates on the impact of a change market 

demand on the optimum location decisions of undifferentiated oligopolistic firms within the Weber-Moses triangle. Assume 

that transportation rates are a function of quantity shipped and distance traveled. We show that the optimum location is 

independent of a change in market demand if the market demand function is linear. This is consistent with the well-known 

Mai-Hwang results with constant transportation rates. It indicates that Mai and Hwang proposition is more general than it 

appears. We further show that an increase in market demand may move the optimum location closer to (away from) the output 

market when the market demand function is concave (convex). These results are significantly different from the well-known 

Mai-Hwang results with constant transportation rates. It indicates that the quantity discounted transportation rates have an 

important influence on the location decisions of undifferentiated oligopolistic firms. 
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1. Introduction 

Since Moses’s path-breaking work [1], Location and the 

Theory of Production, most of the studies in location theory 

of firms has focused on two polar cases: perfect competition 

and monopoly. Little attention is devoted to the intermediate 

and more realistic cases: oligopoly and monopolistic 

competition. In a frequently cited paper, Production-Location 

Decision and Free Entry Oligopoly, Mai and Hwang [2] 

(henceforth MH) incorporated undifferentiated oligopolistic 

competition into the Moses-Weber triangular location model 

and attempted to fill this gap. Under the assumptions that (1) 

firms are symmetric and identical; (2) firms produce a 

homogenous good and make Cournot-Nash conjectures about 

their rivals’ production and location decisions; (3) the 

production function exhibits increasing returns to scale
1
; (4) 

                                                             

1. MH [2] also considered the impact of demand on the location decision when 

the production function exhibits constant or decreasing returns to scale. However, 

it can be shown that no interior solution exists if there are constant or decreasing 

firms are free to enter and leave the industry, they established 

the following interesting and important propositions. 

MH1. The optimum location of an undifferentiated firm is 

independent of a change in demand if the demand function is 

linear. 

MH2. The optimum location of an undifferentiated firm 

moves toward (away from) the output market as demand 

increases if the demand function is convex (concave). MH [2, 

pp.258-260] 

These results crucially depend upon the constant 

transportation rates assumption. However, as is well known 

in transportation economics, discounts for quantity shipped 

and distance traveled are prevalent among various modes of 

transportation, cf. Fair and Williams [4, pp. 320-321, p. 325]. 

Meanwhile, Miller and Jensen [5], Shieh and Mai [6], Gilley, 

Shieh and Williams [7] and others have examined the 

theoretical implication of quantity and distance discounted 

transportation rates on the location decision of a perfectly 

                                                                                                        

returns to scale in production and free entry.  In this note, we will consider the 

increasing returns to scale only. See also Hwang, Mai and Shieh [3]. 
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competitive firm or a monopolistic firm. 

Since MH’s 1992 model serves as a basis for a recent 

attempt to integrate plant location with trade policy and 

domestic commodity taxes, cf. Huang and Mai [8], Chen and 

Shieh [9] and Shieh [10], it would be interesting and 

important to examine the impact of quantity-discounted 

transportation rates on output and the location decisions of 

oligopolistic firms. We first apply the conventional profit 

maximization approach to find the optimal output and plant 

location, and then utilize the comparative static analyses to 

investigate the effect of a change in market demand on the 

plant location decisions of undifferentiated oligopolistic 

firms. It will be shown that MH1 holds if market demand 

function is linear. However, MH2 may not hold if 

transportation rates are dependent of quantity shipped. 

2. An Oligopolistic Location Model 

Following MH [2] and Hwang, Mai & Shieh (2007), our 

analysis is based on the following assumptions. 

(a) N firms employ two transportable inputs (L and K) 

located at A and B to produce a homogenous product (q) 

which is sold at the output market C. The location triangle in 

Figure 1 illustrates the location problem of oligopolistic firms. 

In Figure 1, the distance a and b and the angle π/2 ≥ γ ≥ 0 are 

known; h is the distance between the plant location (E) and C; 

s and z are the distances of plant location (E) from A and B, 

respectively; θ is the angle between CA and CE. 

 

Figure 1. The Weber-Moses Triangle. 

(b) Firms make Cournot-Nash conjectures about their 

rivals’ production and location decisions and enter the 

industry without any restrictions until there is no economic 

profit. Assume also that equilibra are symmetric. Thus, we 

can neglect the location dispersion of firms and focus on the 

impact of market demand on the location decision of a 

representative firm. 

(c) The production function is homogenous of degree n, 

q = f(L, K)                                     (1) 

with the following properties: 

fLL + fKK = nq, 

fLLL + fLKK = (n -1)fL, 

fKLL + fKKK = (n – 1)fK, 

fLLL
2
 + 2fLKLK + fKKK

2
 = n(n – 1)q 

where fL ≡ ∂q/∂L > 0, fK ≡ ∂q/∂K > 0, fLK ≡ fKL ≡ ∂q
2
/∂L∂K > 

0, fLL ≡ ∂
2
q/∂L

2 
< 0, fKK ≡ ∂

2
q/∂K

2 
< 0. MH [2] assumes that 

the production function is homothetic. To simplify our 

analysis and make calculation tractable, we assume that the 

production function is homogenous of degree n. 

(d) The industry inverse demand function for output is 

given by 

P = P(Q, α)                                    (2) 

where Q = ∑q
i
 is the market quantity demanded, PQ ≡ ∂P/∂Q 

< 0, Pα ≡ ∂P/∂α > 0 and PQα ≡ ∂P
2
/∂Q∂α = 0, cf. MH [2, p. 

256]. It should be noted that 

∑ denotes ∑ .����  

(e) The prices of inputs and output are evaluated at the 

plant location (E). The cost of purchasing inputs is the price 

of input at the source plus the freight cost, and the price of 

output is the market price minus the freight cost. 

(f) The transportation rates for inputs and output are 

specified as: 

k = k(s, L), m = m(z, K) and t = t(h, q)                (3) 

where k, m and t are transportation rates of L, K, and q; s, z 

and h are distances from the plant location to the sources A, 

B and the output market C. ks ≡ ∂k/∂s < 0 mz ≡ ∂m/∂z < 0 th ≡ 

∂t/∂h < 0 kL ≡ ∂k/∂L < 0 mK ≡ ∂m/∂K < 0 tq ≡ ∂t/∂q < 0. By 

the law of cosines, we can express s and z as: 

s = (a
2
 + h

2
 – 2ahcosθ)

1/2
, z = [b

2
 + h

2
 – 2bhcos(γ – θ)]

1/2
  (4) 

(g) The objective of each firm is to find the optimum 

location and production within the Weber- Moses triangle 

which maximizes the profit. 

It should be noted that the inclusion of quantity shipped 

and distance traveled as key variables in transportation rate 

functions constitutes the only point of departure from MH’s 

oligopolistic location model. 

With these assumptions, the profit maximizing location 

problem of the representative firm is given by 

Max Π = [P(Q, α)-t(h,q)h]q – [w+k(s,L)s]L–[r+m(z,K)z]K (5) 

where q, L, K, h, and θ are decision variables. Assuming that 

the profit maximizing oligopolistic firm treats the output q 

instead of L and K as a decision variable, we first deal with 

the following constrained production cost minimization 

problem at a given plant location. 

Min L = [w+k(s,L)s]L + [r+m(z,K)z]K + λ[q – f(L, K)]  (6) 

where λ is the Lagrange multiplier. Setting the partial 
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derivatives of L with respect to L, K and λ equal to zero 

yields the first-order conditions for a minimum: 

(∂L/∂L) = w + ksuL – λfL = 0                       (7) 

(∂L/∂K) = r + mzuK – λfK = 0                      (8) 

(∂L/∂ λ) = q – f(L,K) = 0                         (9) 

where uL ≡ 1 - cL, uk = 1 - cK, cL ≡ - (∂k/∂L)(L/k), cK ≡ - 

(∂m/∂K)(K/m). cL and cK are the elasticities of transportation 

rate with respect to L and K, respectively. To ease our 

analysis, we assume that cL and cK are constant and uL > 0, 

uK > 0, cf. Miller and Jensen [5], Shieh and Mai [6] Gilley, 

Shieh and Willians [7] and Shieh and Yeh [11]. 

If the second-order conditions are satisfied, (7) – (9) can 

be solved for L and K in terms of q. The relationship between 

L (or K) and q can be derived by applying the standard 

comparative static analysis, (see Appendix). 

dL/dq = (1/D)(AfKK – BfLK – mKzuKfL)              (10) 

dK/dq = (1/D)(BfLL – AfKL – kLsuLfK)                (11) 

where 

D = (1/L)[nq(AfKK – BfLK) – (fK
2
kLsuL + fL

2
mkzuK)L] 

= (1/K)[nq(BfLL – AfKL) – (fK
2
kLsuL + fL

2
mkzuK)K]      (12) 

and A ≡ w + ksuL, B ≡ r + mzuK, kL ≡ ∂k/∂L, mK ≡ ∂m/∂K. 

In the case where transportation rates are constant, (i.e., 

MH’s case), or a function of distance traveled only, i.e., cL = 

cK = 0, we obtain 

dL/dq = (L/nq) and dK/dq = (K/nq)               (13) 

Equation (13) is identical to the conventional result in the 

non-spatial model, cf. Ferguson [12, pp. 142-143] and 

Silberberg and Suen [13, pp. 205-206]. If the production 

function is homogenous and delivered prices are independent 

of input usage, input proportion depends only upon the 

constant delivered price ratio, and a change in output will not 

change input proportion. The expansion path is a ray through 

the origin in (L, K) dimension. However, in the case where 

transportation rates are a function of quantity shipped, the 

delivered price ratio changes with input usage. A change in 

output and input usage will change the delivered price ratio 

and then input proportion. Thus, the expansion path is not an 

isocline. The result in (13) does not hold. 

It is of interest to note that if transportation rates are 

constant, as MH [2, p. 225] points out, the production cost 

function can be written as the product of two functions: a 

function of delivered prices only and another function of 

output, i.e., C(q) = c(w + ks, r + mz)H(q). However, if 

transportation rates are a function of quantity shipped and 

distance traveled, the delivered prices are a function of output, 

the production cost would be C(q) = {w + k[L(q),s]s}L(q) + 

{r + m[K(q), z]z}K(q). 

Substituting the input demand functions of L and K in 

terms of q into (5), we obtain the profit as a function of q, h 

and θ. The first-order conditions for a maximum are 

(∂π/∂q) = (P+PQq) – thu – (w+ksuL) (dL/dq) – (r+mzuK) 

(dK/dq)= 0                      (14) 

(∂π/∂h) = - tqv – kshvLL – mzhvKK = 0          (15) 

(∂π/∂θ) = - ksθvLL - mzθvKK = 0             (16) 

where sh ≡ ∂s/∂h, zh ≡ ∂z/∂h, sθ ≡ ∂s/∂θ, zθ ≡ ∂z/∂θ, u = 1 – c, 

c ≡ - (∂t/∂q)(q/t), v = 1 - d, d ≡ - (∂t/∂h)(h/t), vL = 1 - dL, dL ≡ 

- (∂k/∂s)(s/k), vK = 1 - dK, and dK ≡ - (∂m/∂z)(z/m). c is the 

elasticity of transportation rate with respect to output shipped. 

d, dL, dK are the elasticities of transportation rates with 

respect to distances, h, s and z respectively. For simplicity, 

we assume that u, v, vL and vK are positive constant 

throughout the paper. We further assume that the second-

order conditions are satisfied and the possibility of a corner 

solution is excluded, cf. Miller and Jensen [5], Kusumoto [14] 

and MH [2]. Thus, we can solve (14) – (16) for q, h and θ 

when free entry is prohibited, i.e., the number of firms (N) is 

given. 

If free entry is allowed, each firm in the industry earns 

normal profit only. The following condition must be satisfied. 

π = [P(Nq, α) – t(h,q)h]q – {w+k[s,L(q)s]}L(q) 

+{r+m[z,K(q)]z}K(q) = 0                     (17) 

If there is an interior solution, we can solve (14) – (17) for 

q, h, θ and N in terms of α and e = (a, b, γ, w, r), where e is a 

vector of remaining parameters. 

q = q(α, e), h = h(α, e), θ = θ(α, e), N = N(α, e)       (18) 

The expressions for the partial derivates such as ∂q/∂α, 

∂h/∂α, ∂θ/∂α and ∂N/∂α can be obtained by applying the 

standard comparative static analyses. This completes our 

modeling of the basic analytical framework for studying of 

the effects of a change in demand on the oligopolistic firm’s 

production and location decisions. 

3. Effect of Demand on Location 

Decision 

We are now in a position to investigate the effect of a 

change in demand on the optimum location. Totally 

differentiating (14) – (17) and applying Cramer’s rule, we 

obtain 

(∂h/∂α) = (1/D4)Pαq
3
PQQ(πθqπθh – πθθπhq)            (19) 

(∂θ/∂α) = (1/D4)Pαq
3
PQQ(πθhπhq – πθqπhh)            (20) 

where 

πθq = - ksθvLuL(dL/dq) – mzθvKuK(dK/dq) 

πθh = - (dL/s)kshsθvLL – (dK/z)mzhzθvKK – ksθhvLL - mzθhvKK 

πθθ = - (dL/s)ksθ
2
vLL – (dK/z)mzθ

2
vKK – ksθθvLL - mzθθvKK 

πhq = - tvu - kshvLuL(dL/dq) – mzhvKuK(dK/dq) 
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πhh = -(d/h)tqv - (dL/s)ksh
2
vLL – (dK/z)mzh

2
vKK – kshhvLL 

–mzhhvKK 

D4 = PQq
2
D3 – q[PQq(N-1)](PQ + PQQq)D2 

D2 and D3 are the second-order and third-order principal 

minor of Hessian determinant D4. D4 > 0, πθθ < 0 and πhh < 0 

are based on the second-order conditions and the stability 

condition. 

Assume that the market demand function is linear, i.e., PQQ 

= 0. From (19) and (20), we at once obtain (∂h/∂α) = 0 and 

(∂θ/∂α) = 0. Thus, we conclude that 

Proposition 1. With free entry, when transportation rates 

are a function of quantity shipped and distance traveled, the 

optimum location is independent of a change in demand if the 

market demand function is linear. 

This result is consistent with MH1 in the constant 

transportation rates case. However, we show that MH1 is 

more general than it appears. The economic interpretation 

behind this proposition is given as follows. It is well known 

that in the Weber-Moses location theory the optimum 

location is determined by the relative strength of the market 

pull and two material pulls. In the case where the market 

demand function is linear, a change in demand will not 

change output per firm and usage of L and K. In this case the 

market pull and the material pulls remain the same. As a 

result, the optimum location is invariant. 

In the case where the demand function is not linear, i.e., 

PQQ ≠ 0, we consider two specific situations regarding 

transportation rates: (1) transportation rates are dependent of 

distance traveled but independent of quantity shipped; (2) 

transportation rates are dependent of quantity shipped and 

distance traveled. 

3.1. Transportation Rates are Independent of 

Quantity Shipped 

In this case, u = uL = uK = 1 and dL/dq = L/nq, dK/dq = 

K/nq. Using the first-order conditions in (15) and (16), we 

can rewrite (19) and (20) as: 

(∂h/∂α) = (1/D4)Pαq
3
PQQπθθ(v/n)t(n – 1)          (19a) 

(∂θ/∂α) = (1/D4)Pαq
3
PQQπθh(v/n)t(n – 1)          (20a) 

Since D4 > 0, πθθ < 0, n > 1, and the sign of πθh is, a priori, 

not certain, the sign of (∂θ/∂α) is ambiguous. Thus, the effect 

of a demand change on the circumferential location is 

ambiguous. However, we can show (∂h/∂α) > (<) 0 as PQQ < 

(>) 0. Thus, we can conclude that 

Proposition 2. With free entry, when transportation rates 

are a function of distance traveled, the optimum location 

moves toward (away from) the output market as demand 

increases if the market demand function is convex (concave). 

This result shows that MH2 can be applied to the case 

where the transportation rates are a function of distance 

traveled only. The economic interpretation is given as follows. 

When the market demand function is convex, an increase in 

demand causes each firm’s output increases. Since the 

production exhibits increasing returns to scale, the quantities 

of the inputs per unit of output decrease, then the material 

pulls decrease and the market pull increases. As a result, the 

optimum location moves toward the output market. 

3.2. Transportation Rates are Dependent of 

Quantity Shipped 

In this case, u ≠ uL ≠ uK ≠ 1 and v ≠ vL ≠ vK ≠ 1. 

Combining (10), (11) and (19), (20), we can see that the signs 

of (∂h/∂α) and (∂θ/∂α) are ambiguous. Thus, we can conclude 

that 

Proposition 3. With free entry, when transportation rates 

are a function of quantity shipped, the optimum location need 

not move toward (away from) the output market as demand 

increases even if the market demand function is convex 

(concave). 

This result is significantly different from MH2. It is well 

known that in the Weber-Moses location theory the optimum 

location is determined by the relative strength of the market 

pull and two material pulls. Each pull is comprised of the 

quantity and marginal transport cost components. In the case 

where the production function exhibits increasing returns to 

scale and transportation rates are independent of quantity 

shipped, MH shows that if the market demand is convex, an 

increase in demand causes each firm’s output to rise and the 

input-output ratio will fall. The importance of material pulls 

relative to the market pull decreases. As a result, the optimum 

location moves toward the output market. If transportation 

rates depend upon quantity shipped, the importance of 

material pulls relative to the market pull may not decrease. 

Thus, the impact of a change in demand on the optimum 

location decision is unpredictable. 

4. Conclusion 

We have introduced quantity shipped and distance traveled 

into transportation rate functions and examined the impact of 

these variables on the location decisions of undifferentiated 

oligopolistic firms with free entry. Under the assumptions 

that transportation rates are constant and the production 

function exhibits increasing returns to scale, MH [2] showed 

that (1) the optimum location is independent of a change in 

demand if the demand function is linear; (2) the optimum 

location will move toward (away from) the output market as 

demand increases if the market demand function is convex 

(concave). 

When transportation rates are a function of distance 

traveled only, we show that MH1 and MH2 hold. This 

indicates that MH propositions are more general than it 

appears. However, when transportation rates are a function of 

quantity shipped, we show that MH1 holds, but MH2 need 

not hold. This indicates that the presence of quantity discount 

in the transportation rates has a significant influence on the 

location decision of undifferentiated oligopoly. 

Finally, it is of interest to point out that our analysis has 

generalized recent discussions on the problem of plant 

location and production decisions under oligopoly in the 
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sense that the conventional results can be easily obtained 

from our model by assuming that transportation rate are 

independent of quantity shipped. 

Appendix 

In this appendix, we derive (10), (11) and (13). Dividing (7) 

by (8), we obtain 

(w +ksuL)/(r+mzuK) = fL/fK                        (a-1) 

Hence, we can rewrite the first-order conditions as 

AfK – BfL = 0                                  (a-2) 

q – f(L, K) = 0                                  (a-3) 

where A ≡ w + ksuL and B = r + mzuK. 

Totally differentiating (a-1) and (a-2), we obtain 

� AfKL–BfLL + kLsuLfK − fLAfKK– BfLK + 	mKzuKfL − fK� �
dLdK� = � 0−1� dq     (a-4) 

where kL ≡ ∂k/∂L mK ≡ ∂m/∂K. Using the property of the 

homogenous production function of degree n, fLLL + fLKK = 

(n-1)fL and fLKL + fKKK = (n-1)fK, and via Cramer’s rule, we 

obtain  

dL/dq = (1/D)(AfKK – BfLK – mKzuKfL)  ≠ L/nq       (a-5) 

dK/dq = (1/D)(BfLL – AfKL – kLsuLfK)  ≠ K/nq        (a-6) 

where 

D = (1/L)[nq(AfKK – BfLK) – (fK
2
kLsuL + fL

2
mkzuK)L] 

= (1/K)[nq(BfLL – AfKL) – (fK
2
kLsuL + fL

2
mkzuK)K]     (a-7) 

If transportation rates are independent of quantity shipped, 

kL = 0 and mK = 0. Substituting these conditions into (a-5), 

(a-6) and (a-7), we obtain 

dL/dq = L/nq and dK/dq = K/nq                     (a-8) 

Note that (a-5) and (a-6) are (10) and (11) and (a-8) is (13). 
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