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Abstract 

In this letter, the static spherically symmetric spacetime which has been derived in [16] are investigated through a kinematical 

consideration. Two distinct viewpoints are concerned with; the gravitational implications, like the gravitational frequency shift, 

and the kinematical characteristics such as shear, rotation and expansion. 
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1. Introduction: The New f(R) Theory 

and the Static Solution 

One of the most reliable and feasible alternatives to 

Einstein’s general relativity, is the ( )f R  theory of gravity, 

where R  is the scalar curvature [1, 2, 3, 4]. The ( )f R  action 

with the cosmological constant is 
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The theory of least action, results in the following field 

equations  
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with Tµν  as the energy-momentum tensor. However, once 

can also insert scalar field dependent functions in action (1), 

such that the resultant field equations are explicitly expressed 

in terms of those scalars. Indeed this has been done by Nojiri 

and Odintsov in [5, 6]. If we consider two independent fields 

to contribute in the original ( )f R  action, then we obtain 

another type of scalar dependent theory. This has been 

discussed in [7] and developed in [8]. In this case the action 

is written as  
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where ϕ  andψ  are functions of the spacetime curvature, i.e. 
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The corresponding field equations are derived as [7] 
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Which for a specific choice of fields, namely 

( ) ( )G G R Rϕ ≡ ≐  and ( ) (1/ ) 1/F F R Rψ ≡ ≐ , it turns to  

2

2 2

2

1 1 1 1
2 2

, .

2
2

1
2 8

( ) ( ) ( )

( )

R R g R R
RR R

g R GT
R

µν µν µ ν

µν µνπ

− − + − Λ − ∇ ∇ −

+ − =
 (6) 



24 Farrin Payandeh:  Kinematical Characteristics of the Static Spherically Symmetric Spacetime of a Scalar Field f(R) Model of Gravity  

 

This is a 2 1/R R+  model of gravity [9] and is indeed 

some sort of a quintessence theory [10, 11, 12, 13, 14, 15]. In 

[16], a static spherically symmetric solution to this type of 

( )f R  theory of gravity, were given to be 
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In this paper, we are about to consider this solution, in 

order to test some of its gravitational implications; i.e. the 

frequency shift and light deflection. Moreover, we obtain the 

kinematical properties of null-like flows. 

2. The Gravitational Frequency Shift  

According to the spacetime metric (7), one can always 

write the energy as a constant of motion in the following 

form [17] 
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Where 
loc

E  is the energy at the proper rest frame, or the 

local energy. Equation (8) is indeed the law of energy shift, 

which is apparently valid for metric (7). This described how 

the energy of a test particle is shifted, according to the 

gravitational field in which the particle is subjected. This 

local energy is related to the wavelength of an emitted ray as 

follows: 
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Which in accordance to (7) will be  
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It is usual to define the frequency shift between the emitted 

and observed wavelengths as [18] 
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The difference between these wavelengths ( λ∆ ) is indeed 

the difference between the changes in proper times of the 

emitted and observed rays. During emission, the rest frames 

of these rays are separated by a proper time difference
em

τ∆ . 

During the observation process as well, this difference is 

something like
obs

τ∆ . Therefore (11) gives 
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In terms of a spherically symmetric line element we have 
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If rays are supposed to be separated only temporally, then 

always 0r∆ = ∆Ω = . So (12) and (13) give 
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Also
obs em

t t∆ = ∆ , because the coordinate time differences 

are the same. Therefore the gravitational frequency shift 

becomes ( 1c = ) 
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or according to (7),  
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This can be considered as the gravitational frequency 

shifty in our ( )f R  theory of gravity, related to scalar field 

constituents.  

3. Light Deflection and Shapiro Delay 

The equatorial (
2

πθ = ) geodesic equations in the 

spacetime defined in (7) are derived as 
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Where dot stands for differentiation with respect toτ , the 

affine parameter of the trajectories. Moreover, massless 

particles have to obey null-like condition  
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According to the Keplerian orbits for light rays, prediction 

states that the massless particles would travel on an ellipse 

like  
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Where 
0

a  is the longest radius of the ellipse and e  is the 

eccentricity.  The current situation which is consistent with 

the spacetime defined in (7), may result in a deviation in the 

trajectory of light which appears to be 
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Now this deflection, may cause some sort of retarding 

between emission and observation of a radar pulse, while it is 

propagating near a massive object. Therefore some say that it 

is another way of stating that the pulse experiences a time 

dilation, therefore it surely suffers a frequency shift. On the 

other hand, it is reliable to state that this is indeed an 

extension of the path. So let us look into this more carefully. 

Suppose that a form a radar at a distance R  from a massive 

source M , an electromagnetic pulse is emitted and reaches a 

minimum distance 
min

r  from the massive source and then, 

reaches a distant planet at the distance pr  from M . 

Afterwards, passing through the same way backwardly, it 

finally is reflected back to the radar. According to above 

statements and invariant line element of spacetime, one can 

write a relation between the proper time and the temporal 

interval of whole process as 
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( , )t R r  is the coordinate time interval for 

going from the radar to the massive source, and then
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t r r  is the time interval for going from M to the planet. 

So according to the deflection angle ∆  in (22), one can write 

the length of the total path as ( )c2 os .pR r+ ∆  So using (7) in 

(23) we get 
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This is called the Shapiro delay. The Shapiro time delay 

effect, is one of the classic tests of general relativity in the 

solar system [19]. As mentioned above, the time delay in (24) 

is caused by the slowing of light or extension of the path, 

according to the curvature caused by the gravitational 

potential. 

In the next section, we look into the kinematical 

characteristics of a radial null flow in the current theory of 

gravitation. 

4. Radial Null Congruence 

Now let us consider a congruence of null geodesic 

trajectories, in the spacetime defined by (7). Let us consider a 

4-velcoity vector like 

( ), ,, ,t rv
µ θ φ= ɺ ɺɺ ɺ                            (25) 

Which is indeed tangent to the trajectories and therefore to 

the congruence. For a purely radial trajectory congruence, 

and for the negative part of (7) which implies the de-Sitter 

cosmological background, integrating the first geodesic 

equation results in 
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The second (18) would be 
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This is hard to be solved for rɺ , since it is totally non-linear. 

However, the null condition (20), simply provides 
1

.
3

r = ±ɺ  

Therefore the tangential velocity vector for purely radial 

congruence becomes 
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Where we chose the negative part of rɺ , since in this case it 

gives us information about the way the rays are converging. 

One can easily see that 0v vµ
ν = , which is desirable for null 

trajectories. There are also three important kinematical 

factors that need to be investigated.  

Let us define a 2-dimenaional hypersurface, defined by the 

projection tensor  

.v vh gµν µν µ ν= +                         (29) 

Then three kinematical factors of a geodesic congruence 

are defined as [20] 

,vµ
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the symmetric traceless shear, and 

( )1
,

2
v vµν µ ν ν µω = −∇ ∇                         (32) 

The anti-symmetric rotation tensor or vorticity. Now for 

the tangential vector in (28) and the spacetime defined in (7), 

the expansion becomes 

2
.

3r
Θ = −                                   (33) 

This shows that for positive values of r , the expansion is 

always negative. This is usually related to the focusing 

process or convergence. Every physical trajectory must suffer 

some sort of focusing, and also a trapped surface where the 

geodesics end. Also the non-zero components of shear tensor 

are 
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Also since the congruence is hupersurface orthogonal, 

there would be no non-zero component for vorticity. 

Therefore as it is seen, the congruence is convergent, with no 

rotation. So as r  increases, the congruence lines become 

gradually get together, and finally they converge in a 

singularity, concealed beyond a trapped surface or a horizon, 

which is obtained by letting
00

0g =  in the metric (7). 

5. Conclusion 

In this paper, we aimed to investigate the gravitational and 

kinematical properties of a new ( )f R  model of gravity, 

which had been specified for definite expressions for its 

scalar field constituents. This was done by exploiting a 

spherically symmetric vacuum solution of the field equations. 

First of all, we paid attention to the most important effect on 

light rays, when they are subjected into a gravitational field; 

the frequency shift. Afterwards we obtained the 

corresponding light deflection within the null geodesics and 

also we took care about the so-called Shapiro delay. The 

kinematical characteristic of a radial null congruence was our 

last subject. We found out that the congruence is indeed 

convergent and non-rotational and pointed out that as it was 

expected, there would be some trapped surfaces which in our 

case; appear to be event horizons of the spacetime. 
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