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Abstract

Using the linear operator Ij*(4,£)(A = 0,£ > 0,p € N,m € N, = NU {0}) for a function f(z) € ¥,

the class of P-valent

meromorphic functions El-Ashwah [6] and the principle of subordination [11], we introduce the class M{,’fk (A, %; B; $), which

2(I A0 f (2)

. . .. 1
satisfies the following condition: - [,8 + e

)’] < ¢(2) (B > p; ¢ € p;z € U). Such results as inclusion relationships,

integral representations, convolution properties and integral-preserving properties for these functions class are obtained.
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1. Introduction

Let A, denote the class of functions f(z) of the form:

f(z)=z"+ ianz" (pON={12,..})

n=p+l

(1.1)

which are analytic and p -valent in the open unit disk
U={z:z0OC and |f<I}. If f(z) and g(z) are
analytic in U , we say that f(z) is subordinate to g(z)
f<g in U or
f(z2)< g(2) (zOU), if there exists a Schwarz function w(z),
which (by definition) is analytic in U with w(0)=0 and
|w(z)| <1 (zOU) , such that f(z)=g(w(z)) (zOU).

Indeed it is known that f(z)< g(z) (z0U) = f(0) = g(0)
and f(U)0Og(U). Further, if the function g(z) is

univalent in U , then we have the following equivalent (cf.,
e.g., [11]; see also [12, p.4])

f(2)=<g(2) = f(0)=g(0)and f(U) < gU).

written symbolically as follows

Let P denote the class of functions of the form:

A =1+3 2",

n=l1

which are analytic and convex in U and satisfies the
following condition

Re{@z)} >0, (z OU).

Also let Zp be the class of functions of the form:

f(m)y=z"+ ianz”_” (pUN), (1.2)

n=1
which are analytic and p-valent in the punctured unit disc
U"={z : zOC and 0<|z| <1} =U\{0}. We note that
> =X
functions f(z)UJZ, givenby (1.2) and g(z)UZ, given by

the class of univalent meromophic functions. For

o

HOLEREDY Ea

n=l1

(pON),

the Hadamard product (or convolution) of f(z)and g(z)is
given by
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(fOg)z)=z" +Za,, 2" = (g 0f)(2).

El-Ashwah [6] (see also [7-10]) defined a linear operator
(A, 0)(A20,0>0,pON,m N, =N {0}) for a function

f(2)UZ, as follows:

ADFE) == +2[””” } ()
n=1
we can write (1.3) as follows:
I (A0 f(2) = (@5 Of)(2),
where
THOEES +Z[”"+q T (4
n=1
It is easily verified from (1.3), that
Az(I} (A, 0) f(2))
(1.5)

:EI;"”(/],E)f(z)—(f +pMI7(A,0) f(z) (A >0).

We observe that the operator /)(A,/) reduce to several

interesting many other operators considered earlier for
different choices of A, ¢, p and m (see e.g. [1-4], [15-16]).

Throughout this paper we assume that

p,kON,,mON,,0, —exp( )and

Joe At Z)——ZD’” (I} (A0 f @ 2))
/ =0 (1.6)
=z +..(f0%)).

Clearly, for k£ =1, we have

oA 62) =1 (A0 f(2).

Making use of the extended multiplier transformation
I7'(A,¢) and the above mentioned principle of subordination

between analytic functions, we now introduce and investigate
the following subclasses of the class 2, of p-valent
meromorphic functions.

Definition 1. A function f(z)UZ,is said to be in the

class M, (A,4; B) if it satisfies the following condition:

z(I"(A 2))’
RE{_ (U7 (A.0Of(2) W

S (At z) j< B (B> p;z00),

where [

P,

" (A,4;2) #0 (zOU") is defined by (1.6) .
Also, a function f(z)0JZ, is said to be in the class

N7 (A, 0; B) if and only if
——pr(z) OM? (A6 ).

Remark 1. (i)Putting A =k =land m =/ =0in the classes
M7} (A0 B) and N (A, 0;8) we obtain the function
classes M, () and N, (f) which are introduced and
studied by Wang et al. [17] and Wang et al. [18];

(i) Putting p=A=k=1and m=/=0 in the class
M (A, 0; B) we obtain the function class S2(B) which are
introduced and studied by Sarangi and Uralegaddi [14].

Definition 2. A function f(z)[JZ is said to be in the class
M7 (A6 B,¢) if it satisfies the following subordination

condition:

1 217 (A0 f(2)
ﬂ—p(’“ RO J““Z)
(B> p;p0 P;z00),

(1.8)

where f", (A,4;z)#0 (z0OU)is defined by (1.6) .

In this paper, we aim and proving such results as inclusion
relationships, integral representations, convolution properties
and integral-preserving properties for the function class

2. Preliminaries

In order to establish our main results, we shall use of the
following lemmas.
Lemma 1 [5, 11].Let B.yUC. Suppose also that @{z) is

convex and univalent in 7 with

@0)=1and Re{B@Az)+y}>0 (zOU).
If p(z) isanalyticin U with p(0) =1, then the following
subordination:

zp'(2)

Aoy

p(z)+

implies that
r(2) <@z) (z00).

Lemma 2 [13]. Let B,YUC. Suppose that z) is convex
and univalent in g7 with

@0)=1and Re{f@z)+y; >0 (zOU).
Also let
q(z) < @z).

If p(z)UP and satisfies the following subordination:



Open Science Journal of Mathematics and Application 2015; 3(3): 43-49 45

zp'(2)

+
PO By

<¢2),

then
p(2)<@z).

Lemma 3. Let f UM (A, 0;3;@). Then

Z(fp't?k(/\,f;z))']_< a2) @1

1
+
ﬁ—p[ﬁ S (A, 052)

Proof. In view of (1.6) , we replace z by

0 z(j=0,1,2,...,k=1) in f;’k(/],ﬂ;z).We thus obtain

Fr A8 = S0 FADNE 2

n=0

1 S n+j)p m m+j
;Z 07 (L (A0 T 2

n=0

—rir
=[],

=007 £ (A, 32). (22)
Differentiating both sides of (1.6) with respect to z , we
obtain

k-1

(/7 (A b2)) =%Z 0 (17 (A0 £Y (T 2).

=0

2.3)

Therefore, from (2.2) and (2.3), we find that
1
L+
ﬁ—p(
; :8 + l
B-p" k]

1 180 2 (A0 /)@ 2)
= + — . 24
'B_p[ﬂ kj .fp”,lk(/‘:stl{ ) J ( )

z2(f) (A, 4;2))
(A4 2)

»

10 (17 (A0 f) (O] 2)
17 A t52)

Iy
=

Moreover, since f UM ', (A, (; B; ), it follows that

1 0 z(1, (A0 f) O] 2)
ﬁ—p(ﬁJr A6 2) ]<¢(Z)
(j=0,L..k-1;z0U).

2.5)

Finally, by noting that ¢{z) is convex and univalent in U,
from (2.4)and (2.5), we conclude that the assertion (2.1)of
Lemma 3 holds true.

3. Properties of the Function Class

In this section, we obtain some inclusion relationships for
the function class M (A, /; B; ).

Unless otherwise mentioned we shall assume throughout
the paper that 1>0,020,8> p,p,kON and mUON,.

Theorem 1. Let ®UP with
Re{(ﬂ—p>¢(z>—ﬂ+p+§}>o (= OU),

then
M”’*'I(A g 18 IB ¢)DM/J/{(A’€’189¢)

Proof. Making use of the relationships in equations (1.5)
and (1.6), we know that

Z(fp'Tk(ﬁ,Z;qﬂ))' +£p +§jf£k (A, 4;2)

=% > 07 (17 AOE )= A G
Let fOM (A, 4; B; @) and suppose that
" (A, 62))
<,/3—p)p<z>—/3=u 0U). (32)

1A t52)

Then p(z)is analytic in U and p(0) =1. It follows from
(3.1) and (3.2) that
0t (Az)

B-p)p(2)-P+p+—=—

A A [l Abz) (3-3)

Differentiating both sides of (3.3) logarithmically with
respect to z and using (3.2), we obtain

zp'(z)
(B-p)p()-B+p+5

1| e aes)
B-»|" STz

p(z)+

(3.4)

From (3.4) and Lemma 3 (with m replaced by ( m+1)),
we can see that

zp'(2)
(B-p)p(z)-B+p+4

p(z)+ <@z) (zOU). (3.5)
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Since Re{(ﬂ—p)q«z)—ﬂ+p +§}>0 (zOU), by

Lemma 1, we have

1 z(f/}"”k(/],ﬂ;z))'
p(Z)—(ﬁ_p) B+ D) <@z) (zOU). (3.6)
By setting
s= | pe BRI |
(B-p) S (Al z) ’ '

we observe that ¢(z) is analytic in U and ¢(0)=1. It
follows from (1.5)and (3.7) that

((B=pra(2)=B) [ (A l;2)

(3.8)
=§1;1+1(A,4)f(z>—(p +§j1;” 4.0 ().

Differentiating both sides of (3.8) with respect to z and

using (3.7), we obtain

(B-p)zq'(2) +(p +§+ (B-1p)p(2) —ﬂj((ﬂ—p)q(z) -5)

, (3.9)
¢ (1 (A0 £(2)
A Az
From (3.2),(3.3) and (3.9), we can obtain
. 2q'(z)
R T Ty
| (1 aor @)
= + auv).
G- 7 T o | ERY
Since

r(z)<¢z) (z0U)
and
Re{(ﬁ—p>¢(z>—ﬁ+p+§}>o (= OV),
it follows from (3.9) and Lemma 2 that

q(z) < ¢z) (z00),

that is, that f UM, (A,(; B;@) . This implies that

M A LB OM, (A LB,

Hence the proof of Theorem 1 is completed.

4. Integral Representation

In this section, we obtain a number of integral
representations  associated with the function class

M7 (AL B ).

Theorem 2. Let f UM ', (A, (; B;@). Then

P)E oot
SR

J=00

frA )y =277 exp{ df}, 4.1)

where f,", (A, 4;2)is defined by (1.6),w(z)is analytic in U
and satisfy w(0) =1 and |w(z) <1(zOU).
Proof. Suppose that f UM, (A,(;3;¢). Then condition

(1.8) can be written as follows:

2 (17 Aoy @)
I (A z)

4.2)

=(B-p)ew (z))- B (z UU),

where w(z) is analytic in U and satisfy w(0)=1 and
|w(z)| <1(zOU). Replacing z by O z(j=0,1,...k=1)
in (4.2), we observe that (4.2) becomes

(17 r@ =)
1760 2)

=(B-p)ew@; )~ B

4.3)
(zOU).

‘We note that
f/j'fk (/],E;Di z) :D;f’” f/j"k A, 4;2) (z00).

Thus, by letting j =0,1,....,
summing the resulting equations, we have

k—1in(4.3), successively, and

Z(fp”,lk(/]’f;z)), _(ﬁ_p) k-1 ) )
Az k ;‘/’(W(ch 2)-B (z0U). (44)

From (4.4), we get

I
o

(/m.62)  p_(B-p)& [w(w(w 2)- 1}@5[]), @.5)

friA Gz oz k4

which, upon integration, yields

B-p) i g ) -1
AT

log(z” ,j’k(/\,z;z))=( d&. (4.6)
Then, the assertion (4.1) of Theorem 2 can now easily

obtained from (4.6) .
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Remark 2. Putting k=1,m =0 and ¢Az)=1% in Theorem
2 we obtain the result obtained by Wang et al. [17, Th. 2].
Theorem 3. Let f UM (A, 0; B;¢). Then

;A0S ()
—p) k=14, j — 4.7
J(,B p)?x(()) B p[(ﬁkp)zjaw@}s» 1#}1(, (4.7)

where w(z) is analytic in U and satisfy w(0)=1 and
|w(z)| <1(z00).

Proof. Suppose that f UM, (A,/; 3;@). Then, from (4.1)
and (4.2), we have

(1701 @)

f”k(%((ﬂ-p){ﬂ(w(z))-ﬂ)

kif ¢(W(D’ -t

J=00

+1
Z[)

_(B-p)ew2)-p) X[ d{] (4.8)

which, upon integration, leads us easily to the assertion (4.7)
of Theorem 3.
Theorem 4. Let f UM (A, 0; B;@). Then

1 A0f (2)=
=](ﬁ—p)¢xwz(5))—ﬂ U
0 Zpﬂ 0

(ﬂ(W (-1 (4.9)

df}l(,

where w,(z)(i =1,2) are analytic in U with w,(0) =0 and
|w,(2)| <1(zOU;i =1,2).

Proof. Suppose that f M, (A,(; B;¢). We then find from
(2.1) that

2 (f Asz))

=p- - 4.10
oAtz (B-p)@w, (z)-B (zOU), 4.10)

Where w;(z) is analytic in U with w,(0) =1. Thus, by

similarly applying the method of proof of Theorem 3, we find
that

I(ﬂ—p)[ﬂwl(f))—l

LA lz)=z7
S (A lz) =z ep(o ‘

]d '3 ] 4.11)
It now follows from (4.2) and (4.11) that

A0 f(2) = f”( s

_(B-p)aw,@)-B
- . €X]

p+l

((ﬁ PP, (2)) = B)

p@ (ﬁ—mm;vl(é))—l]d{}

z

(4.12)

where w,(z)(i =1,2) are analytic in U with w,(0) =0 and

Sumy,

|w,(2)| <1(zOU;i = 1,2). Integrating both sides of (4.12), we

will obtain the assertion (4.9) of Theorem 4.

5. Convolution Properties

In this section, we derive some convolution properties for
the class M ' (A, 4 B; 9.

Theorem 5. Let f UM ' (A, 0; B;@). Then

f@)=
=ﬁ(ﬁ'—p)q:(w(())—ﬁ' X[ Zj q)(w([v -1 {jdz}m

o Zp+l =

0 g m -

,,Z::j(ﬂ+/]nj : J -1
where w(z) is analytic in U with w(0)=1 and
[w(z)| <1 (zOU).

Proof. In view of (1.3) and (4.7), we know that
z - k-1¢ v —
Iﬁ’ p ﬁv:(i)) B Xp((ﬂkp)zj qo(w(gf)) ldedZ

e (0+AnY" - m
=[Z( 7 ) z ”]Qf(z):q’p,ﬁ,g(z)ﬂf(z), (5.2)
n=0
where @7, (z) is given by (1.4).

Thus, from (5.2) , we can easily get the assertion (5.1) of

Theorem 5.

Theorem 6. Let f UM ' (A, 1; B;@). Then

(B-p)ow. )-8 < (B-p)lgw, () -1]
J. m .exp J.
0 4 ° 3

) g m -
,,Z::j(€+/ln) : ]’

where w,(z)(j =1,2) are analytic in U with w,(0) =0 and
|w,(2)| <1003/ =1,2).
Proof. In view of (1.4) and (4.9), we know that

Z —_
U B-p [¢(w (&) dg]dz

f(Z){

d{jd(}u

(5.3)

]ﬂ P)@w, () - ﬁ
0 7

:(i(f;ﬂzj Z"P]W(Z):QD;’J)k(Z)W(Z)' (5.4)

Thus, from (5.4), we easily obtain (5.3) .
Theorem 7. Let fUZ, and
(A, ¢; B; @) if and only if

@UP. Then
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y {fc{(i(u;nj (n_p)zn_,,]

_((g_p)ae"g)-ﬂ)[;[“;njm z”‘”jE(;iZ_él_ZD_: z H}¢ "

(zOU; 0<6<2n).

(5.5)

Proof. Suppose thatf UM ', (A, (; B, ¢). Since

z(I, (/Lf)f(Z))'<

fp”,lk (A, 0:z) (ﬁ_p)ﬂZ)_ﬁ

is equivalent to

z(1)(A,0f (2)) 4

- gy _ .
T 2) (B-p)@e’®)-B(z OU;0<60<2m), (5.6)

it is easy to see that the condition (5.6) can be written as
follows:

1

[z(lz' ADf(@) = 11 L:2)((B- p) @e”) —/3)} £0 (57)
(zOU;0<0<2m).

On the other hand, we know from (1.3) that

ad (f +An

A1rAnfe)) = (Z

n=0

j (n —p)z"”JDf(Z). (5.8)

Also, from the definition of f", (A,4;z), we have

) N lk—l P
[ A2 = I AD £ (2) k;I_m]

| &(Ll+An " mp lk_li
{Zﬁ( ¢ jz JE(kVZ:(;l_DVZ]Df(z). (5.9)

Upon substituting from (5.8)and (5.9) in (5.7), we can

easily obtain the convolution property (5.5) asserted by

Theorem 7.
Remark 3. k=1,m=0 and

Az) :%(O <60<2m) in Theorem 7 we obtain the result
obtained by Wang et al. [17, Th. 3].

Putting

6. Integral-Preserving Properties

In this section, we prove
properties for the class M, (A, 0; B; ).

Theorem 8. Let ®UP and

some integral-preserving

Re{(B-p)@z)-B+p+u} >0 ( OU).

If fOM) (A0B¢, then the function F(2)UZ,
defined by

z

[e#27 @yt (u>0;z OU)

0

U

+
Z/—’P

F(z)= 6.1)

belongs to the class M’ (A, 4; B, 9.

Proof. Let f UM, (A,0;3;¢). Then, from (6.1), we find
that

2174 0)F2)) +(u+ p) 1(A,0) F(2)

6.2)
=p1)(A0) f(2).
Thus, in view of (1.6) and (6.1), we have
A(FLA6 2 )+ e FLOL D o
= /‘1 fp’i‘k(/‘afa Z)
We now put
z(F" (A0 z '
Hz)=—1| g+ ( p”’f( )) (zOU). (6.4)
ﬂ—p Fp,k(/‘az; Z)

Then H(z)is analyticin U and H(0) =1.It follows from
(6.3) and (6.4) that

S (A, 42)

(ﬁ—p)H(Z)—ﬂ+p+ﬂ=ﬂka(AJ;Z)-

(6.5)

Differentiating both sides of (6.5) logarithmically with
respect to z and using Lemma 3, we obtain
zH'(2)
(B-p)H()-B+p+u
L1 (g 2nh sy
B-p fp,k(/l’f;z)

H(z)+

(6.6)

] < @Az).

Re{(B-p)@z)-B+p+u}>0(z0U) , it
follows from (6.6) and Lemma 1 that H(z) < @z) (zOU).
Furthermore, we suppose that

Since

o= [ PRGCACULIO))

J (zOU).
B-p F (A 02)

The remainder of the proof of Theorem 8 is similar to that
of Theorem 1. We, therefore, choose to omit the analogous
details involved. We thus find that

G(2) < Az),

which implies that F(z)OM (A,4;B;¢). This completes
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the proof of Theorem 8.

Remark 4. By specializing the parameters A, 7, p and m,

we can obtain corresponding results for various subclasses
associated with various operators.

7. Conclusion

The author used the operator /7 [’7" (A,0) to define the class

of meromorphic functions.

m . .
MY A GBi)

Inclusion relationships, integral representations, convolution
properties and integral-preserving properties for these
function class are obtained. Some results concerning to the

analytic

class N 1’7" k(A,f;,B;qo) can be obtained from the relation

f(z )DNZ” i 465 if and only if

_Zf'(Z) m .
, DMp,k A, ;D).
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