Certain Subclass of P-valent Meromorphic Functions Involving the Extended Multiplier Transformations

R. M. El-Ashwah
Department of Mathematics, Faculty of Science, Damietta University, New Damietta, Egypt
\section*{Email address}
r_elashwah@yahoo.com

To cite this article

R. M. El-Ashwah. Certain Subclass of P-valent Meromorphic Functions Involving the Extended Multiplier Transformations. Open Science Journal of Mathematics and Application. Vol. 3, No. 3, 2015, pp. 43-49.

Abstract

Using the linear operator $I_{p}^{m}(\lambda, \ell)\left(\lambda \geq 0, \ell>0, p \in \mathrm{~N}, m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}\right)$ for a function $f(z) \in \sum_{p}$ the class of P-valent meromorphic functions El-Ashwah [6] and the principle of subordination [11], we introduce the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$, which satisfies the following condition: $\frac{1}{\beta-p}\left[\beta+\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right]<\phi(z)(\beta>p ; \phi \in p ; z \in U)$. Such results as inclusion relationships, integral representations, convolution properties and integral-preserving properties for these functions class are obtained.

Keywords

Subordination, Analytic, Meromorphic, Multivalent, Multiplier Transformations

1. Introduction

Let A_{p} denote the class of functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathrm{~N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk $U=\{z: z \in \mathrm{C}$ and $|z|<1\}$. If $f(z)$ and $g(z)$ are analytic in U, we say that $f(z)$ is subordinate to $g(z)$ written symbolically as follows $f \prec g$ in U or $f(z) \prec g(z)(z \in U)$, if there exists a Schwarz function $w(z)$, which (by definition) is analytic in U with $w(0)=0$ and $|w(z)|<1 \quad(z \in U)$, such that $f(z)=g(w(z))(z \in U)$. Indeed it is known that $f(z) \prec g(z)(z \in U) \Rightarrow f(0)=g(0)$ and $f(U) \subset g(U)$. Further, if the function $g(z)$ is univalent in U, then we have the following equivalent (cf., e.g., [11]; see also [12, p.4])

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \prec g(U) .
$$

Let P denote the class of functions of the form:

$$
\phi(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n},
$$

which are analytic and convex in U and satisfies the following condition

$$
\operatorname{Re}\{\phi(z)\}>0, \quad(z \in U)
$$

Also let Σ_{p} be the class of functions of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=1}^{\infty} a_{n} z^{n-p} \quad(p \in \mathrm{~N}) \tag{1.2}
\end{equation*}
$$

which are analytic and p -valent in the punctured unit disc $U^{*}=\{z: z \in \mathrm{C}$ and $0<|z|<1\}=U \backslash\{0\}$. We note that $\Sigma_{1}=\Sigma$ the class of univalent meromophic functions. For functions $f(z) \in \Sigma_{p}$ given by (1.2) and $g(z) \in \Sigma_{p}$ given by

$$
g(z)=z^{-p}+\sum_{n=1}^{\infty} b_{n} z^{n-p} \quad(p \in \mathrm{~N})
$$

the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is given by

$$
(f * g)(z)=z^{-p}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n-p}=(g * f)(z)
$$

El-Ashwah [6] (see also [7-10]) defined a linear operator $I_{p}^{m}(\lambda, \ell)\left(\lambda \geq 0, \ell>0, p \in \mathrm{~N}, m \in \mathrm{~N}_{0}=\mathrm{N} \cup\{0\}\right)$ for a function $f(z) \in \Sigma_{p}$ as follows:

$$
\begin{equation*}
I_{p}^{m}(\lambda, \ell) f(z)=z^{-p}+\sum_{n=1}^{\infty}\left[\frac{\lambda n+\ell}{\ell}\right]^{m} a_{n} z^{n-p} . \tag{1.3}
\end{equation*}
$$

we can write (1.3) as follows:

$$
I_{p}^{m}(\lambda, \ell) f(z)=\left(\Phi_{\lambda, \ell}^{p, m} * f\right)(z)
$$

where

$$
\begin{equation*}
\Phi_{\lambda, \ell}^{p, m}(z)=z^{-p}+\sum_{n=1}^{\infty}\left[\frac{\lambda n+\ell}{\ell}\right]^{m} z^{n-p} . \tag{1.4}
\end{equation*}
$$

It is easily verified from (1.3), that

$$
\begin{align*}
& \lambda z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime} \\
& =\ell I_{p}^{m+1}(\lambda, \ell) f(z)-(\ell+p \lambda) I_{p}^{m}(\lambda, \ell) f(z)(\lambda>0) \tag{1.5}
\end{align*}
$$

We observe that the operator $I_{p}^{m}(\lambda, \ell)$ reduce to several interesting many other operators considered earlier for different choices of λ, ℓ, p and m (see e.g. [1-4], [15-16]).

Throughout this paper, we assume that $p, k \in \mathrm{~N}, \ell, m \in \mathrm{~N}_{0}, \epsilon_{k}=\exp \left(\frac{2 \pi i}{k}\right)$ and

$$
\begin{align*}
& f_{p, k}^{m}(\lambda, \ell ; z)=\frac{1}{k} \sum_{j=0}^{k-1} \epsilon_{k}^{j p}\left(I_{p}^{m}(\lambda, \ell) f\left(\epsilon_{k}^{j} z\right)\right) \tag{1.6}\\
& =z^{-p}+\ldots .\left(f \in \Sigma_{p}\right)
\end{align*}
$$

Clearly, for $k=1$, we have

$$
f_{p, 1}^{m}(\lambda, \ell ; z)=I_{p}^{m}(\lambda, \ell) f(z)
$$

Making use of the extended multiplier transformation $I_{p}^{m}(\lambda, \ell)$ and the above mentioned principle of subordination between analytic functions, we now introduce and investigate the following subclasses of the class Σ_{p} of p-valent meromorphic functions.

Definition 1. A function $f(z) \in \Sigma_{p}$ is said to be in the class $M_{p, k}^{m}(\lambda, \ell ; \beta)$ if it satisfies the following condition:

$$
\begin{equation*}
\operatorname{Re}\left(-\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right)<\beta \quad(\beta>p ; z \in U) \tag{1.7}
\end{equation*}
$$

where $f_{p, k}^{m}(\lambda, \ell ; z) \neq 0\left(z \in U^{*}\right)$ is defined by (1.6).
Also, a function $f(z) \in \Sigma_{p}$ is said to be in the class
$N_{p, k}^{m}(\lambda, \ell ; \beta)$ if and only if

$$
-\frac{z f^{\prime}(z)}{p} \in M_{p, k}^{m}(\lambda, \ell ; \beta) .
$$

Remark 1. (i)Putting $\lambda=k=1$ and $m=\ell=0$ in the classes $M_{p, k}^{m}(\lambda, \ell ; \beta)$ and $N_{p, k}^{m}(\lambda, \ell ; \beta)$ we obtain the function classes $M_{p}(\beta)$ and $N_{p}(\beta)$ which are introduced and studied by Wang et al. [17] and Wang et al. [18];
(ii) Putting $p=\lambda=k=1$ and $m=\ell=0$ in the class $M_{p, k}^{m}(\lambda, \ell ; \beta)$ we obtain the function class $\Sigma_{N}^{* *}(\beta)$ which are introduced and studied by Sarangi and Uralegaddi [14].

Definition 2. A function $f(z) \in \Sigma_{p}$ is said to be in the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$ if it satisfies the following subordination condition:

$$
\begin{gather*}
\frac{1}{\beta-p}\left(\beta+\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \prec \phi(z) \tag{1.8}\\
(\beta>p ; \phi \in P ; z \in U)
\end{gather*}
$$

where $f_{p, k}^{m}(\lambda, \ell ; z) \neq 0 \quad(z \in U)$ is defined by (1.6).
In this paper, we aim and proving such results as inclusion relationships, integral representations, convolution properties and integral-preserving properties for the function class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.

2. Preliminaries

In order to establish our main results, we shall use of the following lemmas.

Lemma 1 [5, 11].Let $\beta, \gamma \in \mathrm{C}$. Suppose also that $\phi(z)$ is convex and univalent in U with

$$
\phi(0)=1 \text { and } \operatorname{Re}\{\beta \phi(z)+\gamma\}>0 \quad(z \in U)
$$

If $p(z)$ is analytic in U with $p(0)=1$, then the following subordination:

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \phi(z)
$$

implies that

$$
p(z) \prec \phi(z) \quad(z \in U)
$$

Lemma 2 [13]. Let $\beta, \gamma \in$ C. Suppose that $\phi(z)$ is convex and univalent in U with

$$
\phi(0)=1 \text { and } \operatorname{Re}\{\beta \phi(z)+\gamma\}>0 \quad(z \in U) .
$$

Also let

$$
q(z) \prec \phi(z)
$$

If $p(z) \in P$ and satisfies the following subordination:

$$
p(z)+\frac{z p^{\prime}(z)}{\beta q(z)+\gamma} \prec \phi(z)
$$

then

$$
p(z) \prec \phi(z) .
$$

Lemma 3. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then

$$
\begin{equation*}
\frac{1}{\beta-p}\left(\beta+\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \prec \phi(z) . \tag{2.1}
\end{equation*}
$$

Proof. In view of (1.6) , we replace z by $\in_{k}^{j} z(j=0,1,2, . ., k-1)$ in $f_{p, k}^{m}(\lambda, \ell ; z)$. We thus obtain

$$
\begin{align*}
f_{p, k}^{m}\left(\lambda, \ell ; \epsilon_{k}^{j} z\right) & =\frac{1}{k} \sum_{n=0}^{k-1} \epsilon_{k}^{n p}\left(I_{p}^{m}(\lambda, \ell) f\right)\left(\epsilon_{k}^{n+j} z\right) \\
& =\epsilon_{k}^{-j p} \frac{1}{k} \sum_{n=0}^{k-1} \epsilon_{k}^{(n+j) p}\left(I_{p}^{m}(\lambda, \ell) f\right)\left(\epsilon_{k}^{n+j} z\right) \\
& =\epsilon_{k}^{-j p} f_{p, k}^{m}(\lambda, \ell ; z) \tag{2.2}
\end{align*}
$$

Differentiating both sides of (1.6) with respect to z, we obtain

$$
\begin{equation*}
\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}=\frac{1}{k} \sum_{j=0}^{k-1} \epsilon_{k}^{j(p+1)}\left(I_{p}^{m}(\lambda, \ell) f\right)^{\prime}\left(\epsilon_{k}^{j} z\right) \tag{2.3}
\end{equation*}
$$

Therefore, from (2.2) and (2.3), we find that

$$
\begin{align*}
& \frac{1}{\beta-p}\left(\beta+\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \\
& =\frac{1}{\beta-p}\left(\beta+\frac{1}{k} \sum_{j=0}^{k-1} \frac{\epsilon_{k}^{j(p+1)} z\left(I_{p}^{m}(\lambda, \ell) f\right)^{\prime}\left(\epsilon_{k}^{j} z\right)}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \\
& =\frac{1}{\beta-p}\left(\beta+\frac{1}{k} \sum_{j=0}^{k-1} \frac{\epsilon_{k}^{j} z\left(I_{p}^{m}(\lambda, \ell) f\right)^{\prime}\left(\epsilon_{k}^{j} z\right)}{f_{p, k}^{m}\left(\lambda, \ell ; \in_{k}^{j} z\right)}\right) \tag{2.4}
\end{align*}
$$

Moreover, since $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$, it follows that

$$
\begin{gather*}
\frac{1}{\beta-p}\left(\beta+\frac{\in_{k}^{j} z\left(I_{p}^{m}(\lambda, \ell) f\right)^{\prime}\left(\epsilon_{k}^{j} z\right)}{f_{p, k}^{m}\left(\lambda, \ell ; \in_{k}^{j} z\right)}\right) \prec \phi(z) \tag{2.5}\\
(j=0,1, . ., k-1 ; z \in U)
\end{gather*}
$$

Finally, by noting that $\phi(z)$ is convex and univalent in U, from (2.4) and (2.5), we conclude that the assertion (2.1) of Lemma 3 holds true.

3. Properties of the Function Class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$

In this section, we obtain some inclusion relationships for the function class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.

Unless otherwise mentioned we shall assume throughout the paper that $\lambda>0, \ell \geq 0, \beta>p, p, k \in \mathrm{~N}$ and $m \in \mathrm{~N}_{0}$.

Theorem 1. Let $\phi \in P$ with

$$
\operatorname{Re}\left\{(\beta-p) \phi(z)-\beta+p+\frac{\ell}{\lambda}\right\}>0(z \in U)
$$

then

$$
M_{p, k}^{m+1}(\lambda, \ell ; \beta ; \beta ; \phi) \subset M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)
$$

Proof. Making use of the relationships in equations (1.5) and (1.6), we know that
$z\left(f_{p, k}^{m}(\lambda, \ell ; \phi)\right)^{\prime}+\left(p+\frac{\ell}{\lambda}\right) f_{p, k}^{m}(\lambda, \ell ; z)$
$=\frac{\left(\frac{\ell}{\lambda}\right)}{k} \sum_{j=0}^{k-1} \epsilon_{k}^{j p}\left(I_{p}^{m+1}(\lambda, \ell) f\left(\epsilon_{k}^{j} z\right)\right)=\frac{\ell}{\lambda} f_{p, k}^{m+1}(\lambda, \ell ; z)$
Let $f \in M_{p, k}^{m+1}(\lambda, \ell ; \beta ; \phi)$ and suppose that

$$
\begin{equation*}
(\beta-p) p(z)-\beta=\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}(z \in U) \tag{3.2}
\end{equation*}
$$

Then $p(z)$ is analytic in U and $p(0)=1$. It follows from (3.1) and (3.2) that

$$
\begin{equation*}
(\beta-p) p(z)-\beta+p+\frac{\ell}{\lambda}=\frac{\ell}{\lambda} \frac{f_{p, k}^{m+1}(\lambda, \ell ; z)}{f_{p, k}^{m}(\lambda, \ell ; z)} . \tag{3.3}
\end{equation*}
$$

Differentiating both sides of (3.3) logarithmically with respect to z and using (3.2), we obtain

$$
\begin{align*}
& p(z)+\frac{z p^{\prime}(z)}{(\beta-p) p(z)-\beta+p+\frac{\ell}{\lambda}} \\
& =\frac{1}{(\beta-p)}\left(\beta+\frac{z\left(f_{p, k}^{m+1}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m+1}(\lambda, \ell ; z)}\right) . \tag{3.4}
\end{align*}
$$

From (3.4) and Lemma 3 (with m replaced by $(m+1)$), we can see that

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{(\beta-p) p(z)-\beta+p+\frac{\ell}{\lambda}} \prec \phi(z) \quad(z \in U) . \tag{3.5}
\end{equation*}
$$

Since $\operatorname{Re}\left\{(\beta-p) \phi(z)-\beta+p+\frac{\ell}{\lambda}\right\}>0(z \in U), \quad$ by Lemma 1, we have

$$
\begin{equation*}
p(z)=\frac{1}{(\beta-p)}\left(\beta+\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \prec \phi(z) \quad(z \in U) . \tag{3.6}
\end{equation*}
$$

By setting

$$
\begin{equation*}
q(z)=\frac{1}{(\beta-p)}\left(\beta+\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \quad(z \in U) \tag{3.7}
\end{equation*}
$$

we observe that $q(z)$ is analytic in U and $q(0)=1$. It follows from (1.5) and (3.7) that

$$
\begin{align*}
& ((\beta-p) q(z)-\beta) f_{p, k}^{m}(\lambda, \ell ; z) \\
& =\frac{\ell}{\lambda} I_{p}^{m+1}(\lambda, \ell) f(z)-\left(p+\frac{\ell}{\lambda}\right) I_{p}^{m}(\lambda, \ell) f(z) . \tag{3.8}
\end{align*}
$$

Differentiating both sides of (3.8) with respect to z and using (3.7), we obtain

$$
\begin{align*}
& (\beta-p) z q^{\prime}(z)+\left(p+\frac{\ell}{\lambda}+(\beta-p) p(z)-\beta\right)((\beta-p) q(z)-\beta) \\
& =\frac{\ell}{\lambda} \cdot \frac{z\left(I_{p}^{m+1}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)} \tag{3.9}
\end{align*}
$$

From (3.2), (3.3) and (3.9), we can obtain

$$
\begin{aligned}
& q(z)+\frac{z q^{\prime}(z)}{(\beta-p) p(z)-\beta+p+\frac{\ell}{\lambda}} \\
& =\frac{1}{(\beta-p)}\left(\beta+\frac{z\left(I_{p}^{m+1}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m+1}(\lambda, \ell ; z)}\right) \prec \phi(z) \quad(z \in U) .
\end{aligned}
$$

Since

$$
p(z) \prec \phi(z) \quad(z \in U)
$$

and

$$
\operatorname{Re}\left\{(\beta-p) \phi(z)-\beta+p+\frac{\ell}{\lambda}\right\}>0(z \in U)
$$

it follows from (3.9) and Lemma 2 that

$$
q(z) \prec \phi(z) \quad(z \in U)
$$

that is, that $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. This implies that

$$
M_{p, k}^{m+1}(\lambda, \ell ; \beta ; \phi) \subset M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi) .
$$

Hence the proof of Theorem 1 is completed.

4. Integral Representation

In this section, we obtain a number of integral representations associated with the function class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.

Theorem 2. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then

$$
\begin{equation*}
f_{p, k}^{m}(\lambda, \ell ; z)=z^{-p} \exp \left\{\frac{(\beta-p)}{k} \sum_{j=0}^{k-1} \int_{0}^{z} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi\right\}, \tag{4.1}
\end{equation*}
$$

where $f_{p, k}^{m}(\lambda, \ell ; z)$ is defined by $(1.6), w(z)$ is analytic in U and satisfy $w(0)=1$ and $|w(z)|<1(z \in U)$.

Proof. Suppose that $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then condition (1.8) can be written as follows:
$\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}=(\beta-p) \phi(w(z))-\beta(z \in U)$,
where $w(z)$ is analytic in U and satisfy $w(0)=1$ and $|w(z)|<1(z \in U)$. Replacing z by $\in_{k}^{j} z(j=0,1, \ldots, k-1)$ in (4.2), we observe that (4.2) becomes

$$
\begin{align*}
& \frac{\in_{k}^{j} z\left(I_{p}^{m}(\lambda, \ell) f\left(\epsilon_{k}^{j} z\right)\right)^{\prime}}{f_{p, k}^{m}\left(\lambda, \ell ; \in_{k}^{j} z\right)} \tag{4.3}\\
& =(\beta-p)\left(\phi\left(w\left(\epsilon_{k}^{j} z\right)\right)\right)-\beta \quad(z \in U)
\end{align*}
$$

We note that

$$
f_{p, k}^{m}\left(\lambda, \ell ; \in_{k}^{j} z\right)=\epsilon_{k}^{-j p} f_{p, k}^{m}(\lambda, \ell ; z)(z \in U)
$$

Thus, by letting $j=0,1, \ldots, k-1$ in (4.3), successively, and summing the resulting equations, we have

$$
\begin{equation*}
\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}=\frac{(\beta-p)}{k} \sum_{j=0}^{k-1} \phi\left(w\left(\epsilon_{k}^{j} z\right)\right)-\beta(z \in U) . \tag{4.4}
\end{equation*}
$$

From (4.4), we get

$$
\begin{equation*}
\frac{\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}+\frac{p}{z}=\frac{(\beta-p)}{k} \sum_{j=0}^{k-1}\left[\frac{\phi\left(w\left(\epsilon_{k}^{j} z\right)\right)-1}{z}\right](z \in U), \tag{4.5}
\end{equation*}
$$

which, upon integration, yields

$$
\begin{equation*}
\log \left(z^{p} f_{p, k}^{m}(\lambda, \ell ; z)\right)=\frac{(\beta-p)}{k} \sum_{j=0}^{k-1} \int_{0}^{z} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi \tag{4.6}
\end{equation*}
$$

Then, the assertion (4.1) of Theorem 2 can now easily obtained from (4.6) .

Remark 2. Putting $k=1, m=0$ and $\phi(z)=\frac{1+z}{1-z}$ in Theorem 2 we obtain the result obtained by Wang et al. [17, Th. 2].

Theorem 3. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then

$$
\begin{align*}
& I_{p}^{m}(\lambda, \ell) f(z) \\
& =\int_{0}^{z} \frac{(\beta-p) \phi(w(\zeta))-\beta}{\zeta^{p+1}} \cdot \exp \left(\frac{(\beta-p)}{k} \sum_{j=0}^{k-1} \int_{0}^{\zeta} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi\right) d \zeta, \tag{4.7}
\end{align*}
$$

where $w(z)$ is analytic in U and satisfy $w(0)=1$ and $|w(z)|<1(z \in U)$.
Proof. Suppose that $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then, from (4.1) and (4.2), we have

$$
\begin{align*}
& \left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}=\frac{f_{p, k}^{m}(\lambda, \ell ; z)}{z}((\beta-p) \phi(w(z))-\beta) \\
& =\frac{((\beta-p) \phi(w(z))-\beta)}{z^{p+1}} \cdot \exp \left(\frac{(\beta-p)}{k} \sum_{j=0}^{k-1 z} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi\right), \tag{4.8}
\end{align*}
$$

which, upon integration, leads us easily to the assertion (4.7) of Theorem 3.

Theorem 4. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then

$$
\begin{align*}
& I_{p}^{m}(\lambda, \ell) f(z)= \\
& =\int_{0}^{2} \frac{(\beta-p) \phi\left(w_{2}(\zeta)\right)-\beta}{\zeta^{p+1}} \cdot \exp \left(\int_{0}^{\xi} \frac{(\beta-p)\left[\phi\left(w_{1}(\xi)\right)-1\right]}{\xi} d \xi\right) d \zeta, \tag{4.9}
\end{align*}
$$

where $w_{i}(z)(i=1,2)$ are analytic in U with $w_{i}(0)=0$ and $\left|w_{i}(z)\right|<1(z \in U ; i=1,2)$.

Proof. Suppose that $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. We then find from (2.1) that

$$
\begin{equation*}
\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}=(\beta-p) \phi\left(w_{1}(z)\right)-\beta(z \in U) \tag{4.10}
\end{equation*}
$$

Where $w_{1}(z)$ is analytic in U with $w_{1}(0)=1$. Thus, by similarly applying the method of proof of Theorem 3, we find that

$$
\begin{equation*}
f_{p, k}^{m}(\lambda, \ell ; z)=z^{-p} \cdot \exp \left(\int_{0}^{z} \frac{(\beta-p)\left[\phi\left(w_{1}(\xi)\right)-1\right]}{\xi} d \xi\right) . \tag{4.11}
\end{equation*}
$$

It now follows from (4.2) and (4.11) that
$\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}=\frac{f_{p, k}^{m}(\lambda, \ell ; z)}{z}\left((\beta-p) \phi\left(w_{2}(z)\right)-\beta\right)$
$=\frac{(\beta-p) \phi\left(w_{2}(z)\right)-\beta}{z^{p+1}} \cdot \exp \left(\int_{0}^{z} \frac{(\beta-p)\left[\phi\left(w_{1}(\xi)\right)-1\right]}{\xi} d \xi\right)$,
(4.12)
where $w_{i}(z)(i=1,2)$ are analytic in U with $w_{i}(0)=0$ and
$\left|w_{i}(z)\right|<1(z \in U ; i=1,2)$. Integrating both sides of (4.12), we will obtain the assertion (4.9) of Theorem 4.

5. Convolution Properties

In this section, we derive some convolution properties for the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.

$$
\text { Theorem 5. Let } f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi) \text {. Then }
$$

$$
\begin{align*}
& f(z)= \\
& =\left[\int_{0}^{z} \frac{(\beta-p) \phi(w(\zeta))-\beta}{\zeta^{p+1}} \cdot \exp \left(\frac{(\beta-p)}{k} \sum_{j=0}^{k-1 \zeta} \int_{0} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi\right) d \zeta\right] * \\
& *\left(\sum_{n=0}^{\infty}\left(\frac{\ell}{\ell+\lambda n}\right)^{m} z^{n-p}\right), \tag{5.1}
\end{align*}
$$

where $w(z)$ is analytic in U with $w(0)=1$ and $|w(z)|<1 \quad(z \in U)$.

Proof. In view of (1.3) and (4.7), we know that

$$
\begin{align*}
& \int_{0}^{z} \frac{(\beta-p) \phi(w(\zeta))-\beta}{\zeta^{p+1}} \cdot \exp \left(\frac{(\beta-p)}{k} \sum_{j=0}^{k-1 \zeta} \frac{\phi\left(w\left(\epsilon_{k}^{j} \xi\right)\right)-1}{\xi} d \xi\right) d \zeta \\
& \quad=\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m} z^{n-p}\right) * f(z)=\Phi_{p, \lambda, \ell}^{m}(z) * f(z) \tag{5.2}
\end{align*}
$$

where $\Phi_{p, \lambda, \ell}^{m}(z)$ is given by (1.4).
Thus, from (5.2), we can easily get the assertion (5.1) of Theorem 5.

Theorem 6. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then

$$
\begin{align*}
f(z)= & {\left[\int_{0}^{z} \frac{(\beta-p) \phi\left(w_{2}(\zeta)\right)-\beta}{\zeta^{p+1}} \cdot \exp \left(\int_{0}^{\zeta} \frac{(\beta-p)\left[\phi\left(w_{1}(\xi)\right)-1\right]}{\xi} d \xi\right) d \zeta\right] * } \\
& *\left(\sum_{n=0}^{\infty}\left(\frac{\ell}{\ell+\lambda n}\right)^{m} z^{n-p}\right) \tag{5.3}
\end{align*}
$$

where $w_{j}(z)(j=1,2)$ are analytic in U with $w_{j}(0)=0$ and $\left|w_{j}(z)\right|<1(z \in U ; j=1,2)$.

Proof. In view of (1.4) and (4.9), we know that

$$
\begin{align*}
& \int_{0}^{z} \frac{(\beta-p) \phi\left(w_{2}(\zeta)\right)-\beta}{\zeta^{p+1}} \cdot \exp \left(\int_{0}^{\zeta} \frac{(\beta-p)\left[\phi\left(w_{1}(\xi)\right)-1\right.}{\xi} d \xi\right) d \zeta \\
& \quad=\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m} z^{n-p}\right) * f(z)=\Phi_{p, \lambda, \ell}^{m}(z) * f(z) \tag{5.4}
\end{align*}
$$

Thus, from (5.4), we easily obtain (5.3).
Theorem 7. Let $f \in \Sigma_{p}$ and $\phi \in P$. Then $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$ if and only if

$$
\begin{align*}
& z^{p}\left\{f * \left[\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m}(n-p) z^{n-p}\right)\right.\right. \\
& \left.\left.-\left((\beta-p) \phi\left(e^{i \theta}\right)-\beta\right)\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m} z^{n-p}\right) *\left(\frac{1}{k} \sum_{v=0}^{k-1} \frac{z^{-p}}{1-\epsilon^{v} z}\right)\right]\right\} \neq 0 \\
& \quad(z \in U ; 0 \leq \theta<2 \pi) \tag{5.5}
\end{align*}
$$

Proof. Suppose that $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Since

$$
\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)} \prec(\beta-p) \phi(z)-\beta
$$

is equivalent to

$$
\begin{equation*}
\frac{z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)} \neq(\beta-p) \phi\left(e^{i \theta}\right)-\beta(z \in U ; 0 \leq \theta<2 \pi), \tag{5.6}
\end{equation*}
$$

it is easy to see that the condition (5.6) can be written as follows:

$$
\begin{gather*}
z^{p}\left[z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}-f_{p, k}^{m}(\lambda, \ell ; z)\left((\beta-p) \phi\left(e^{i \theta}\right)-\beta\right)\right] \neq 0 \tag{5.7}\\
(z \in U ; 0 \leq \theta<2 \pi)
\end{gather*}
$$

On the other hand, we know from (1.3) that
$z\left(I_{p}^{m}(\lambda, \ell) f(z)\right)^{\prime}=\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m}(n-p) z^{n-p}\right) * f(z)$.
Also, from the definition of $f_{p, k}^{m}(\lambda, \ell ; z)$, we have

$$
\begin{align*}
& f_{p, k}^{m}(\lambda, \ell ; z)=I_{p}^{m}(\lambda, \ell) f(z) *\left(\frac{1}{k} \sum_{v=0}^{k-1} \frac{z^{p}}{1-\epsilon^{v} z}\right) \\
& =\left(\sum_{n=0}^{\infty}\left(\frac{\ell+\lambda n}{\ell}\right)^{m} z^{n-p}\right) *\left(\frac{1}{k} \sum_{v=0}^{k-1} \frac{z^{-p}}{1-\epsilon^{v} z}\right) * f(z) . \tag{5.9}
\end{align*}
$$

Upon substituting from (5.8) and (5.9) in (5.7), we can easily obtain the convolution property (5.5) asserted by Theorem 7.

Remark 3. Putting $k=1, m=0 \quad$ and $\phi(z)=\frac{1+e^{i \theta}}{1-e^{i \theta}}(0 \leq \theta<2 \pi)$ in Theorem 7 we obtain the result obtained by Wang et al. [17, Th. 3].

6. Integral-Preserving Properties

In this section, we prove some integral-preserving properties for the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.

Theorem 8. Let $\phi \in P$ and

$$
\operatorname{Re}\{(\beta-p) \phi(z)-\beta+p+\mu\}>0 \quad(z \in U)
$$

If $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$, then the function $F(z) \in \Sigma_{p}$ defined by

$$
\begin{equation*}
F(z)=\frac{\mu}{z^{\mu+p}} \int_{0}^{z} t^{\mu+p-1} f(t) d t \quad(\mu>0 ; z \in U) \tag{6.1}
\end{equation*}
$$

belongs to the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$.
Proof. Let $f \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. Then, from (6.1), we find that

$$
\begin{align*}
& z\left(I_{p}^{m}(\lambda, \ell) F(z)\right)^{\prime}+(\mu+p) I_{p}^{m}(\lambda, \ell) F(z) \tag{6.2}\\
& =\mu I_{p}^{m}(\lambda, \ell) f(z) .
\end{align*}
$$

Thus, in view of (1.6) and (6.1), we have

$$
\begin{align*}
& z\left(F_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}+(\mu+p) F_{p, k}^{m}(\lambda, \ell ; z) \tag{6.3}\\
& =\mu f_{p, k}^{m}(\lambda, \ell ; z)
\end{align*}
$$

We now put

$$
\begin{equation*}
H(z)=\frac{1}{\beta-p}\left(\beta+\frac{z\left(F_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{F_{p, k}^{m}(\lambda, \ell ; z)}\right)(z \in U) \tag{6.4}
\end{equation*}
$$

Then $H(z)$ is analytic in U and $H(0)=1$. It follows from (6.3) and (6.4) that

$$
\begin{equation*}
(\beta-p) H(z)-\beta+p+\mu=\mu \frac{f_{p, k}^{m}(\lambda, \ell ; z)}{F_{p, k}^{m}(\lambda, \ell ; z)} . \tag{6.5}
\end{equation*}
$$

Differentiating both sides of (6.5) logarithmically with respect to z and using Lemma 3, we obtain

$$
\begin{align*}
& H(z)+\frac{z H^{\prime}(z)}{(\beta-p) H(z)-\beta+p+\mu} \\
& =\frac{1}{\beta-p}\left(\beta+\frac{z\left(f_{p, k}^{m}(\lambda, \ell ; z)\right)^{\prime}}{f_{p, k}^{m}(\lambda, \ell ; z)}\right) \prec \phi(z) . \tag{6.6}
\end{align*}
$$

Since $\operatorname{Re}\{(\beta-p) \phi(z)-\beta+p+\mu\}>0(z \in U)$, it follows from (6.6) and Lemma 1 that $H(z) \prec \phi(z)(z \in U)$. Furthermore, we suppose that

$$
G(z)=\frac{1}{\beta-p}\left(\beta+\frac{z\left(I_{p}(\lambda, \ell) F(z)\right)^{\prime}}{F_{p, k}^{m}(\lambda, \ell ; z)}\right) \quad(z \in U) .
$$

The remainder of the proof of Theorem 8 is similar to that of Theorem 1. We, therefore, choose to omit the analogous details involved. We thus find that

$$
G(z) \prec \phi(z),
$$

which implies that $F(z) \in M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$. This completes
the proof of Theorem 8.
Remark 4. By specializing the parameters λ, ℓ, p and m, we can obtain corresponding results for various subclasses associated with various operators.

7. Conclusion

The author used the operator $I_{p}^{m}(\lambda, \ell)$ to define the class $M_{p, k}^{m}(\lambda, \ell ; \beta ; \phi) \quad$ of meromorphic analytic functions. Inclusion relationships, integral representations, convolution properties and integral-preserving properties for these function class are obtained. Some results concerning to the class $N_{p, k}^{m}(\lambda, \ell ; \beta ; \phi)$ can be obtained from the relation $f(z) \in N_{p, k}^{m}(\lambda, \ell ; \beta) \quad$ if and only if $-\frac{z f^{\prime}(z)}{p} \in M_{p, k}^{m}(\lambda, \ell ; \beta)$.

Acknowledgements

The author records her sincere thanks to the referee for the comments given towards the manuscript.

References

[1] F. M. Al-Oboudi and H. A. Al-Zkeri, Applications of Briot-Bouquet differential subordination to certain classes of meromorphic functions, Arab J. Math Sci., 12(2005), no. 1, 1-14.
[2] M. K. Aouf and H. M. Hossen, New criteria for meromorphic p-valent starlike functions, Tsukuba J. Math., 17(1993), 481-486.
[3] N. E. Cho, O. S. Kwon, and H. M Srivastava, Inclusion and argument propertie for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl., 300(2004), 505-520.
[4] N. E. Cho, O. S. Known and H. M. Srivastava, Inclusion relationships for certain subclasses of meromorphic functions associated with a family of multiplier transformations, Integral Transforms Special Functions, 16(2005), no. 18, 647-659.
[5] P. J. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289--305.
[6] R. M. El-Ashwah, A note on certain meromorphic p-valent functions, Appl. Math. Letters, 22(2009), 1756-1759.
[7] R. M. El-Ashwah and M. K. Aouf, Differential subordination and superordination on p -valent meromorphic functions defined by extended multiplier transformations, European J. Pure Appl. Math., 3(2010), no. 6, 1070-1085
[8] R. M. El-Ashwah and M. K. Aouf, Some properties of certain subclasses of meromorphically p -valent functions involving extended multiplier transformations, Comput. Math. Appl. 59(2010), 2111-2120.
[9] R. M. El-Ashwah, Properties of certain class of p-valent meromorphic functions associated with new integral operator, Acta Univ. Apulensis, (2012), no. 29, 255-264.
[10] R. M. EL-Ashwah, M. K. Aouf and T. Bulboaca, Differential subordinations for classes of meromorphic p-valent Functions defined by multiplier transformations, Bull. Austr.Math. Soc., 83(2011), 353-368.
[11] S. S. Miller and P. T. Mocanu, On some classes of first order differential subordination, Michigan Math. J. 32(1985), 185-195.
[12] S. S. Miller and P. T. Mocanu, Differential Subordinations : Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. no. 225, Marcel Dekker, Inc. New York, 2000.
[13] K. S. Padmanabhan and R. Parvathem, Some applications of differential subordination, Bull. Austral. Math. Soc., 32(1985), 321-330.
[14] S. M. Sarangi, and S. B. Uralegaddi, Extreme points of meromorphic univalent functions with two fixed points, Analels Stintifice Ale Univ., 11(1995), 127-134.
[15] H. M. Srivastava and J. Patel, Applications of differential subordination to certain classes of meromorphically multivalent functions, J. Ineq. Pure Appl. Math., 6(2005), no. 3, Art.88, 1-15.
[16] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1991), 137-140.
[17] Z. Wang, Y, Sun and Z, Zhang, Certain classes meromorphic multivalent functions, Comput. Math. Appl., 58(2009), 1408-1417.
[18] Z. Wang, Z. Liu and A. Catas, On neighborhood and partial sums of certain meromorphic multivalent functions, Appl. Math. Letters, 24(2011), 864-868.

