
American Journal of Computer Science and Engineering
2014; 1(5): 39-42

Published online January 10, 2015 (http://www.openscienceonline.com/journal/ajcse)

An authentication scheme based on chaos, a TTP,
and a DNA sequence

Ralph M. DeFrangesco

Drexel University, College of Computing and Informatics, Philadelphia, PA. 19104 USA

Email address

rd337@drexel.edu

To cite this article
Ralph M. DeFrangesco. An Authentication Scheme Based on Chaos, a TTP, and a DNA Sequence. American Journal of Computer

Science and Engineering. Vol. 1, No. 5, 2014, pp. 39-42.

Abstract

As individuals, we count on authentication to protect the systems that store our most important information on. Critical

systems include medical, financial, and systems that run our nation’s infrastructure. This paper will discuss how chaos can

be used in conjunction with a TTP and a DNA sequence to create a onetime credential that can be used to authenticate to a

system.

Keywords

Chaos, TTP, Non-Linear Dynamics

1. Introduction

Authentication protocols are typically error-prone and

difficult to implement (Muhammad, 2013). A strong

authentication protocol is essential to any secure networked

system because strong authentication instills trust

(Muhammad, 2013).

Remote Authentication Dial-In Service (RADIUS) is a

widely used service for authentication, authorization, and

accounting services (Poznyakoff, 2008). Although RADIUS

is widely used, the protocol has many known vulnerabilities.

Kerberos is considered a trusted third-party authentication

protocol. It is based on the Needham and Schroeder

encryption algorithm. Trust in this case is a matter of

reference. The security part of the protocol works by giving

complete trust to the Kerberos server, allowing it to

determine if it trusts a client or not. The system uses tickets

and timestamps and is based on the Needham and Schroeder

algorithm for encryption. According to Wang & Feng (2013),

Kerberos has suffered from several known vulnerabilities

including: a replay attack, a dictionary attack, key storage

problems, malware attacks, and the authentication forward

problem.

Password authentication protocol (PAP) is a point-to-point

protocol used with wireless networks. The basic protocol

provides a methodology for a peer to establish a

communications connection using a simple two-way

handshake. The protocol has had several known flaws and

there has been an attempt to fix the original release (Ma,

McCrindle, & Cheng, 2006).

SSL has until recently been one of the more reliable

protocols for encrypting information over the Internet. Even

though it has been replaced by TLS, it is still used quite a bit.

However, recently the latest version has been broken.

POODLE is an attack that hackers can user to cause a

downgrade, and thereby breaking the cryptographic security

of the protocol.

2. Current Methodology

Password based authentication is still the most commonly

used method for authentication, but it provides minimal

security to its users (Sood, Sarje & Singh, 2009). Today,

basic authentication is still done with a login and password.

In almost all organizations, a login is often assigned to an

individual or server. This can be the first initial and last name

of the individual or the system name. So, half of the equation

is already known or can be guessed.

Although passwords still remain the primary method for

securing data, they are susceptible to attacks. Jingbo &

Pingping (2010) have found that user chosen passwords are

40 Ralph M. DeFrangesco: An Authentication Scheme Based on Chaos, a TTP, and a DNA Sequence

inherently insecure since they come from a limited universe.

This limited universe makes them vulnerable to dictionary

and brute force attacks. There are three types of credentials

that use can use to authenticate; something you know,

something you have, and something you are

(Lakshmiraghavan, 2013). Two-factor authentication uses

two of these options for authentication. Two-factor

authentication can be added to increase security, but again it

is susceptible to being broken or a side channel attack.

To compound the problem even further, many of the

protocols that we use to protect us, can be broken or reveal

information in plain text. For instance, Telnet and FTP send

login credential information in plain text and SMTP sends

mail messages in plain text yet they continue to be used.

3. Proposed Solution

This paper proposes an authentication scheme that uses

chaos as a randomizer for a login and a Trusted-third Party

(CA) DNA sequence as a password that creates a multi-factor,

two-system, onetime credential used for authentication.

The one-time credential is based on the use of a one-time

pad. Traditionally, a one-time pad uses a random sequence of

numbers (key) that is combined mathematically with the

message and then added together using modular addition.

The result is a cipher that only the person receiving the

message with the same key, can decode (Katz and Lindell,

2008).

A Trusted Third Party provides non-repudiation, equality,

and fairness (Li, Wu & Li, 2013). In this solution, the

Certificate Authority (CA) creates the random key. The

individual user is given an application that creates the cipher

text that is used as a one-time login and password, or

credential as explained Figure 1.

S2 S1

Figure 1. A CA as a trusted third-party

S1 is the server that starts the authentication sequence. S2

is the server that S1 wants to log into. The certificate

authority is used to create two random values used as input

into a chaos number generator. The login sequence is as

follows:

1 S1 requests to log into S2 and sends a login request.

2 S1 also sends a request to the CA for two random

values; the number of iterations the chaos generator

uses and the initial input.

3 The CA sends the random values to both S1 and S2.

4 The CA, S1, and S2 use the random values as an input

into the chaos number generator to come up with a

chaos value.

5 Both S1 and S2 send a hash of the sequence to the CA

for validation.

6 If all three values match, then the hashed value is used

as the login.

7 S1 sends the login to S2.

8 The CA requests the IP address from S1.

9 The CA forwards the IP address to S2.

10 S2 requests the password. This is the DNA sequence

based on the chaos value.

11 S2 validates the IP, the login, and password from S1.

12 If all three values match, then S2 allows S1 to

authenticate.

4. Application Example

The Python random number generator creates two random

numbers that will be used by the chaos generator. One is for

the initial input value and the other is the number of

iterations that the chaos generator will make. Although the

Python random number is not truly random, it will suffice for

the chaos generator.

The Certificate Authority runs this application to create

the values that are used in the chaos calculator

import random

Create a random value for the iteration input

iteration_val = random.randint(0,1000000)

print(iteration_val)

Create a random value for the initial input

initial_val = random.random()

print(initial_val)

Output:

12000 (this is the number of iterations)

0.120118082049 (this is the initial input for the chaos

generator)

Note: each time the random number runs, the values will

be different)

The output of the random number generator is sent to both

S1 and S2. Now, the CA, S1, and S2 all have the same

random values. Each takes the two numbers from the Python

random number generator and inputs them into the chaos

generator. The chaos generator will create another random

value.

This application takes the two inputs from the Python

random generator and uses them to create a random number

based on a chaos algorithm.

#Get the number of iterations

iterations = int(input("Enter the number of iterations: "))

 American Journal of Computer Science and Engineering 2014; 1(5): 39-42 41

Gets the initial value

initial_value = float(input("Enter initial value: "))

Prime the algorithm

temp_value = ((4 * initial_value) * (1 - initial_value))

Loop through the algorithm by the number of iterations

for i in range(iterations):

 chaos_value = ((4 * temp_value) * (1 - temp_value))

 temp_value = chaos_value

 temp_string = str(temp_value)

Print the number created by the chaos #generator

print("\nChaos value: ", temp_string)

Open a file for writing

text_file = open("chaos_values.txt", "w")

text_file.write (temp_string)

text_file.close()

input("\nPress any key")

Now that there is a random number, based on chaos, the

next step is to cut out the DNA sequence based on the chaos

number that will be used as the password. The application

loads the basic DNA sequence, gets the first two numbers

from the random chaos value (minus the “.0”) and uses it as a

starting point. Next, the chaos value is loaded and used to get

the random DNA sequence based on the individual values.

This application loads the chaos value and

creates a DNA sequence that will be used as a

password for authentication

Open the DNA file and load the DNA sequence

protein_file = open("Protein.txt", "r")

protein_line = protein_file.read()

protein_length = len(protein_line)

protein_file.close()

Open the file with the chaos value in it to get the random

starting point

text_file = open("chaos_values.txt", "r")

Strip off the leading "0." and get the random starting

point

strip_numbers = text_file.read(2)

temp_pos = text_file.read(2)

start_pos = int(temp_pos)

text_file.close()

Open a the file with the chaos value in it again

text_file = open("chaos_values.txt", "r")

Strip off the leading "0."

strip_numbers = text_file.read(2)

offset = []

position = []

i = 0

Get the next 12 numbers and the random DNA sequence

starting at the random position

offset = text_file.read(12)

for i in range(12):

 position = offset[i]

 position = (start_pos + int(position))

 print(protein_line[position])

text_file.close()

input("\n\nPress any key")

The authentication scheme uses the chaos value as the

login and essentially, the random number created by the

chaos generator will be used to create a random sequence of

DNA. This random sequence of DNA will be used as the

password.

The strong point about this authentication scheme is that it

is a onetime pad. This is to say that the login and password

can only be used once. The sequence has to be rerun every

time S1 needs to log into S2. This onetime pad makes it very

difficult to guess the login and password. The use of a chaos

generator based on an algorithm that is protected from public

view, a DNA sequence that is changed on a regular basis, and

a Certificate Authority that validates credentials are

additional protection that make this authentication scheme a

very viable option.

5. Conclusion

Authentication protocols are meant to protect information,

however many are broken and do not provide protection like

they should. This paper proposed a solution that uses a TTP,

and a chaos generator to create a random DNA sequence that

can be used as a onetime credential for authentication.

Appendix A

Contents of the Protein.txt file:

CCATAGCACGTTACAACGTGAAGGTAATTCCCGAG

GTTATATGGCCCACACTGTGGAACATTACCCATATCT

GCGTTGCCAGAA

References

[1] Jingbo, Y. & Pingping, S. (2010) A secure strong password
authentication protocol. Second International Conference on
Software Technology and Engineering, pgs 355-357.

[2] Katz, J., & Lindell, Y. (2008). Introduction to modern
cryptography. Chapman and Hall: Boca Raton, FL.

42 Ralph M. DeFrangesco: An Authentication Scheme Based on Chaos, a TTP, and a DNA Sequence

[3] Lakshmiraghavan, B. (2013). Two-factor authentication. In
Pro ASP. NET Web API Security (pp. 319-343). Apress.

[4] Li, Q., Wu, K. & Li, F. (2013) An optimistic non-repudiation
protocol focused on transparent trusted third party IEEE
Conference on High Performance Computing and
Communications, pgs 682-689.

[5] Liu, D., & Coslow, M. (2008), Extensible authentication
protocols for IEEE standards 802.11 and 802.16. The
International Conference on Mobile Technology, Applications
& Systems. September 10-12, 2008

[6] Ma, X., McCrindle, R. & Cheng, X. (2006). Verifying and
fixing password authentication Protocol. Proceedings of the
Seventh ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel
Distributed Computing.

[7] Muhammad, S (2013) Applying authentication tests to
discover man-in-the-middle attack in security protocols.
Eighth Conference on Digital Information Management, pgs
35-40.

[8] Poznyakoff, S. (2008) GNU Radius Reference Manual. GNU
Press. Boston, MA.

[9] Sood, S, Sarje, A. & Singh, K. (2009) Cryptanalysis of
password authentication schemes: Current status and key
issues. International Conference on Methods and Models in
Computer Science.

[10] Wang, C. & Feng, C. (2013) Security analysis and
improvement for Kerberos based bynamic password and
Diffie-Hellman algorithm. Fourth International Conference on
Emerging Intelligent Data and Web Technologies, pgs 256-
260.

